{"title":"模糊离散分数粒度微积分及其在分数蜘蛛网模型中的应用","authors":"Xuelong Liu, Guoju Ye, Wei Liu, Fangfang Shi","doi":"10.1016/j.amc.2024.129176","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to solve a fuzzy initial value problem for fractional difference equations and to study a class of discrete fractional cobweb models with fuzzy data under the Caputo granular difference operator. Based on relative-distance-measure fuzzy interval arithmetic, we first present several new concepts for fuzzy functions in the field of fuzzy discrete fractional calculus, such as the forward granular difference operator, Riemann-Liouville fractional granular sum, Riemann-Liouville and Caputo granular differences. The composition rules and Leibniz laws used to solve a fuzzy initial value problem for fractional difference equations are also presented. As applications, we obtain the solutions of fuzzy discrete Caputo fractional cobweb models, provide conditions for the convergence of the solution to the equilibrium value, and discuss different cases of how the trajectory of the granular solution converges to the equilibrium value. The developed results are also illustrated through several numerical examples.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"489 ","pages":"Article 129176"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy discrete fractional granular calculus and its application to fractional cobweb models\",\"authors\":\"Xuelong Liu, Guoju Ye, Wei Liu, Fangfang Shi\",\"doi\":\"10.1016/j.amc.2024.129176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work aims to solve a fuzzy initial value problem for fractional difference equations and to study a class of discrete fractional cobweb models with fuzzy data under the Caputo granular difference operator. Based on relative-distance-measure fuzzy interval arithmetic, we first present several new concepts for fuzzy functions in the field of fuzzy discrete fractional calculus, such as the forward granular difference operator, Riemann-Liouville fractional granular sum, Riemann-Liouville and Caputo granular differences. The composition rules and Leibniz laws used to solve a fuzzy initial value problem for fractional difference equations are also presented. As applications, we obtain the solutions of fuzzy discrete Caputo fractional cobweb models, provide conditions for the convergence of the solution to the equilibrium value, and discuss different cases of how the trajectory of the granular solution converges to the equilibrium value. The developed results are also illustrated through several numerical examples.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"489 \",\"pages\":\"Article 129176\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324006374\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006374","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Fuzzy discrete fractional granular calculus and its application to fractional cobweb models
This work aims to solve a fuzzy initial value problem for fractional difference equations and to study a class of discrete fractional cobweb models with fuzzy data under the Caputo granular difference operator. Based on relative-distance-measure fuzzy interval arithmetic, we first present several new concepts for fuzzy functions in the field of fuzzy discrete fractional calculus, such as the forward granular difference operator, Riemann-Liouville fractional granular sum, Riemann-Liouville and Caputo granular differences. The composition rules and Leibniz laws used to solve a fuzzy initial value problem for fractional difference equations are also presented. As applications, we obtain the solutions of fuzzy discrete Caputo fractional cobweb models, provide conditions for the convergence of the solution to the equilibrium value, and discuss different cases of how the trajectory of the granular solution converges to the equilibrium value. The developed results are also illustrated through several numerical examples.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.