论蒙茨多项式的递推公式及其应用

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Huaijin Wang, Chuanju Xu
{"title":"论蒙茨多项式的递推公式及其应用","authors":"Huaijin Wang,&nbsp;Chuanju Xu","doi":"10.1016/j.amc.2024.129166","DOIUrl":null,"url":null,"abstract":"<div><div>The Müntz polynomials are defined by contour integral associated to a complex sequence <span><math><mi>Λ</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>}</mo></math></span>, which are large extensions of the algebraic polynomials. In this paper, we derive new recurrence formulas for Müntz polynomials, aimed at facilitating the computation of these polynomials and their related integrals. Additionally, we construct a novel class of orthogonal polynomials with respect to the logarithmic weight function <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>λ</mi></mrow></msup><msup><mrow><mo>(</mo><mo>−</mo><mi>log</mi><mo>⁡</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msup></math></span> on the interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. We also develop the corresponding Gauss quadrature rules, which serve as powerful techniques for accurately solving integrals involving singular terms.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"489 ","pages":"Article 129166"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On recurrence formulae of Müntz polynomials and applications\",\"authors\":\"Huaijin Wang,&nbsp;Chuanju Xu\",\"doi\":\"10.1016/j.amc.2024.129166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Müntz polynomials are defined by contour integral associated to a complex sequence <span><math><mi>Λ</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>}</mo></math></span>, which are large extensions of the algebraic polynomials. In this paper, we derive new recurrence formulas for Müntz polynomials, aimed at facilitating the computation of these polynomials and their related integrals. Additionally, we construct a novel class of orthogonal polynomials with respect to the logarithmic weight function <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>λ</mi></mrow></msup><msup><mrow><mo>(</mo><mo>−</mo><mi>log</mi><mo>⁡</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>μ</mi></mrow></msup></math></span> on the interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. We also develop the corresponding Gauss quadrature rules, which serve as powerful techniques for accurately solving integrals involving singular terms.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"489 \",\"pages\":\"Article 129166\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324006271\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006271","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

芒茨多项式是由与复序列Λ={λ0,λ1,λ2,⋯}相关的等高线积分定义的,是代数多项式的大扩展。本文推导了蒙茨多项式的新递推公式,旨在简化这些多项式及其相关积分的计算。此外,我们还在区间(0,1)上构建了一类关于对数权重函数 xλ(-logx)μ 的新型正交多项式。我们还开发了相应的高斯正交规则,这些规则是精确求解涉及奇异项的积分的有力技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On recurrence formulae of Müntz polynomials and applications
The Müntz polynomials are defined by contour integral associated to a complex sequence Λ={λ0,λ1,λ2,}, which are large extensions of the algebraic polynomials. In this paper, we derive new recurrence formulas for Müntz polynomials, aimed at facilitating the computation of these polynomials and their related integrals. Additionally, we construct a novel class of orthogonal polynomials with respect to the logarithmic weight function xλ(logx)μ on the interval (0,1). We also develop the corresponding Gauss quadrature rules, which serve as powerful techniques for accurately solving integrals involving singular terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信