氧化锌基材料用于生成稳定可靠的太阳能燃料 (H2) 的当前趋势和未来展望

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Mam Ishaku Dagareh , Hafeez Yusuf Hafeez , J. Mohammed , Adamu David Gaima Kafadi , Abdussalam Balarabe Suleiman , Chifu Ebenezer Ndikilar
{"title":"氧化锌基材料用于生成稳定可靠的太阳能燃料 (H2) 的当前趋势和未来展望","authors":"Mam Ishaku Dagareh ,&nbsp;Hafeez Yusuf Hafeez ,&nbsp;J. Mohammed ,&nbsp;Adamu David Gaima Kafadi ,&nbsp;Abdussalam Balarabe Suleiman ,&nbsp;Chifu Ebenezer Ndikilar","doi":"10.1016/j.chphi.2024.100774","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc oxide (ZnO) has been utilized for photocatalytic water splitting due to its excellent performance, low cost, non-toxicity, thermal stability, and chemical stability. However, despite these remarkable properties, ZnO has significant drawbacks, such as photocorrosion and an inability to utilize visible light due to its wide band gap of 3.3-3.4 eV. Structurally, ZnO exists in three different forms: rocksalt, cubic blende, and hexagonal wurtzite. It has been reported that the wurtzite structure produces more H<sub>2</sub> compared to its counterparts. Herein, we discuss several techniques for synthesizing zinc oxide and how incorporating zinc oxide nanoparticles with metal oxides, sulfides, and other materials can enhance its performance in the visible light region. Recently, integrating ZnO with TiO<sub>2</sub> –Ag using an S-scheme heterostructure boosted the H<sub>2</sub> activity rate to approximately 60.0 mmol/g/h, which is about 166 times superior to pristine ZnO. This improvement is attributed to the enhanced light absorption and charge transfer facilitated by Ag doping. This review examines ZnO-based photocatalytic H<sub>2</sub> generation via water splitting with different modification strategies and explores future outlooks for improving performance of ZnO.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"9 ","pages":"Article 100774"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Trends and Future Perspectives on ZnO-Based Materials for Robust and Stable Solar Fuel (H2) Generation\",\"authors\":\"Mam Ishaku Dagareh ,&nbsp;Hafeez Yusuf Hafeez ,&nbsp;J. Mohammed ,&nbsp;Adamu David Gaima Kafadi ,&nbsp;Abdussalam Balarabe Suleiman ,&nbsp;Chifu Ebenezer Ndikilar\",\"doi\":\"10.1016/j.chphi.2024.100774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zinc oxide (ZnO) has been utilized for photocatalytic water splitting due to its excellent performance, low cost, non-toxicity, thermal stability, and chemical stability. However, despite these remarkable properties, ZnO has significant drawbacks, such as photocorrosion and an inability to utilize visible light due to its wide band gap of 3.3-3.4 eV. Structurally, ZnO exists in three different forms: rocksalt, cubic blende, and hexagonal wurtzite. It has been reported that the wurtzite structure produces more H<sub>2</sub> compared to its counterparts. Herein, we discuss several techniques for synthesizing zinc oxide and how incorporating zinc oxide nanoparticles with metal oxides, sulfides, and other materials can enhance its performance in the visible light region. Recently, integrating ZnO with TiO<sub>2</sub> –Ag using an S-scheme heterostructure boosted the H<sub>2</sub> activity rate to approximately 60.0 mmol/g/h, which is about 166 times superior to pristine ZnO. This improvement is attributed to the enhanced light absorption and charge transfer facilitated by Ag doping. This review examines ZnO-based photocatalytic H<sub>2</sub> generation via water splitting with different modification strategies and explores future outlooks for improving performance of ZnO.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"9 \",\"pages\":\"Article 100774\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424003189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424003189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化锌(ZnO)具有性能优异、成本低廉、无毒、热稳定性和化学稳定性等特点,已被用于光催化水分离。然而,尽管氧化锌具有这些显著的特性,但它也有一些明显的缺点,如光腐蚀以及因其 3.3-3.4 eV 的宽带隙而无法利用可见光。从结构上看,氧化锌有三种不同的形态:岩盐状、立方混合状和六方涡晶状。据报道,与其他同类结构相比,钨辉石结构能产生更多的 H2。在此,我们将讨论几种合成氧化锌的技术,以及如何将氧化锌纳米颗粒与金属氧化物、硫化物和其他材料结合,以提高其在可见光区域的性能。最近,利用 S 型异质结构将氧化锌与 TiO2 -Ag 整合在一起,将 H2 活性率提高到约 60.0 mmol/g/h,是原始氧化锌的 166 倍。这一改进归功于掺杂银后增强的光吸收和电荷转移。本综述探讨了不同修饰策略下基于氧化锌的光催化水分离产生 H2 的情况,并探讨了提高氧化锌性能的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current Trends and Future Perspectives on ZnO-Based Materials for Robust and Stable Solar Fuel (H2) Generation
Zinc oxide (ZnO) has been utilized for photocatalytic water splitting due to its excellent performance, low cost, non-toxicity, thermal stability, and chemical stability. However, despite these remarkable properties, ZnO has significant drawbacks, such as photocorrosion and an inability to utilize visible light due to its wide band gap of 3.3-3.4 eV. Structurally, ZnO exists in three different forms: rocksalt, cubic blende, and hexagonal wurtzite. It has been reported that the wurtzite structure produces more H2 compared to its counterparts. Herein, we discuss several techniques for synthesizing zinc oxide and how incorporating zinc oxide nanoparticles with metal oxides, sulfides, and other materials can enhance its performance in the visible light region. Recently, integrating ZnO with TiO2 –Ag using an S-scheme heterostructure boosted the H2 activity rate to approximately 60.0 mmol/g/h, which is about 166 times superior to pristine ZnO. This improvement is attributed to the enhanced light absorption and charge transfer facilitated by Ag doping. This review examines ZnO-based photocatalytic H2 generation via water splitting with different modification strategies and explores future outlooks for improving performance of ZnO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信