{"title":"用锗烯和双层六边形结构砷化镓构建的范德华异质结构的堆积阶和垂直应变可控光电特性","authors":"Gang Guo , Yongcheng Chen , Lingyun Mao , Ping Li","doi":"10.1016/j.surfin.2024.105413","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we use first-principles calculations to investigate the structural and optoelectronic properties of DLHS-AlAs/germanene van der Waals heterostructures (vdWHs) with different stacking orders and vertical strain. The AIMD calculations and binding energies demonstrate that all three DLHS-AlAs/germanene vdWHs are thermally and energetically stable. The interesting transitions from semiconductor to metal and type-I to type-II band alignment can be observed in AB stacking vdWH under vertical strain regulation. Meanwhile, the Dirac cone is always well preserved in all vdWHs. The calculated optical absorption spectra indicate that all vdWHs show enhanced light absorption across the ultraviolet to visible light range, compared to their individual components. Besides, the application of vertical strain can result in the weakening or enhancement of ultraviolet light absorption coefficients in different regions of all vdWHs. Of particular interest is the observation that optical adsorption in the visible light region for all vdWHs is almost always enhanced and broadened with increasing vertical compression strain. These excellent and tunable optoelectronic properties suggest that DLHS-AlAs/germanene vdWHs may have favourable potential for use in optoelectronic devices.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105413"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stacking order and vertical strain controllable optoelectronic properties of van der Waals heterostructures constructed with germanene and double layer hexagonal structure AlAs\",\"authors\":\"Gang Guo , Yongcheng Chen , Lingyun Mao , Ping Li\",\"doi\":\"10.1016/j.surfin.2024.105413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we use first-principles calculations to investigate the structural and optoelectronic properties of DLHS-AlAs/germanene van der Waals heterostructures (vdWHs) with different stacking orders and vertical strain. The AIMD calculations and binding energies demonstrate that all three DLHS-AlAs/germanene vdWHs are thermally and energetically stable. The interesting transitions from semiconductor to metal and type-I to type-II band alignment can be observed in AB stacking vdWH under vertical strain regulation. Meanwhile, the Dirac cone is always well preserved in all vdWHs. The calculated optical absorption spectra indicate that all vdWHs show enhanced light absorption across the ultraviolet to visible light range, compared to their individual components. Besides, the application of vertical strain can result in the weakening or enhancement of ultraviolet light absorption coefficients in different regions of all vdWHs. Of particular interest is the observation that optical adsorption in the visible light region for all vdWHs is almost always enhanced and broadened with increasing vertical compression strain. These excellent and tunable optoelectronic properties suggest that DLHS-AlAs/germanene vdWHs may have favourable potential for use in optoelectronic devices.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"55 \",\"pages\":\"Article 105413\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024015694\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015694","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Stacking order and vertical strain controllable optoelectronic properties of van der Waals heterostructures constructed with germanene and double layer hexagonal structure AlAs
In this study, we use first-principles calculations to investigate the structural and optoelectronic properties of DLHS-AlAs/germanene van der Waals heterostructures (vdWHs) with different stacking orders and vertical strain. The AIMD calculations and binding energies demonstrate that all three DLHS-AlAs/germanene vdWHs are thermally and energetically stable. The interesting transitions from semiconductor to metal and type-I to type-II band alignment can be observed in AB stacking vdWH under vertical strain regulation. Meanwhile, the Dirac cone is always well preserved in all vdWHs. The calculated optical absorption spectra indicate that all vdWHs show enhanced light absorption across the ultraviolet to visible light range, compared to their individual components. Besides, the application of vertical strain can result in the weakening or enhancement of ultraviolet light absorption coefficients in different regions of all vdWHs. Of particular interest is the observation that optical adsorption in the visible light region for all vdWHs is almost always enhanced and broadened with increasing vertical compression strain. These excellent and tunable optoelectronic properties suggest that DLHS-AlAs/germanene vdWHs may have favourable potential for use in optoelectronic devices.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)