{"title":"小檗碱脂质体纳米颗粒在 A549 肺癌球形细胞光动力疗法中的应用","authors":"Kave Moloudi, Heidi Abrahamse, Blassan P. George","doi":"10.1016/j.bbrep.2024.101877","DOIUrl":null,"url":null,"abstract":"<div><div>Application of liposomes is a critical strategy in drug delivery and increase cellular uptake of drugs having low water solubility. Berberine (BBR) is a bioactive compound found in several plants, including Goldenseal, Barberry, and Oregon grape. It has garnered attention for its various health benefits, particularly in metabolic health and antimicrobial activity. However, one of the challenges associated with BBR is its water solubility. Moreover, BBR has photosensitizing potential via absorbance of light and generation of free radicals. Hence, to improve water solubility and bioavailability, one of the important strategies employed is using lipid-based carriers to enhance solubility. In this study we employed liposomes to deliver BBR in A549 lung cancer spheroid cells to enhance photodynamic therapy efficacies. Results from the EDS and UV–Vis spectroscopy revealed that the BBR had been loaded onto liposomes, with three peaks appearing between 250 and 450 nm. Morphology of Lipo@BBR nanocomplex was in wavy crest shape and the size was 56.99 ± 3.74 nm in SEM and TEM analysis, respectively. FTIR data illustrated that Lipo@BBR has four significant peaks at 1250, 1459, 1736, and 2907 cm<sup>−1</sup>. DLS data showed that Lipo@BBR has a negative surface charge with a −10.7 Zeta Potential (mV). Additionally, based on Zetasizer measurements, the size of Lipo@BBR complex was 82.7 ± 6.5. Cytotoxicity assay investigation with MTT assay presented that IC<sub>50</sub> of Lipo@BBR in PDT was 10 ± 0.5 μg/mL that led to a volume reduction of the A549 spheroids after five sessions of PDT fractionation (total light dose was set at 25 J/cm<sup>2</sup>). qPCR and immunofluorescence results demonstrated that Lipo@BBR increases the BAX/BCL2 ratio in A549 spheroid cells, hence improving PDT efficiency. In conclusion, our results illustrated that safe dose of Lipo@BBR (10 ± 0.5 μg/mL) in PDT fractionation protocol can be one of the strategies to suppress the tumor volume and cell death proliferation. Authors recommend using Lipo@BBR nanocomplex in PDT fractionation as well as more <em>in vivo</em> investigation is warranted.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"40 ","pages":"Article 101877"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of liposomal nanoparticles of berberine in photodynamic therapy of A549 lung cancer spheroids\",\"authors\":\"Kave Moloudi, Heidi Abrahamse, Blassan P. George\",\"doi\":\"10.1016/j.bbrep.2024.101877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Application of liposomes is a critical strategy in drug delivery and increase cellular uptake of drugs having low water solubility. Berberine (BBR) is a bioactive compound found in several plants, including Goldenseal, Barberry, and Oregon grape. It has garnered attention for its various health benefits, particularly in metabolic health and antimicrobial activity. However, one of the challenges associated with BBR is its water solubility. Moreover, BBR has photosensitizing potential via absorbance of light and generation of free radicals. Hence, to improve water solubility and bioavailability, one of the important strategies employed is using lipid-based carriers to enhance solubility. In this study we employed liposomes to deliver BBR in A549 lung cancer spheroid cells to enhance photodynamic therapy efficacies. Results from the EDS and UV–Vis spectroscopy revealed that the BBR had been loaded onto liposomes, with three peaks appearing between 250 and 450 nm. Morphology of Lipo@BBR nanocomplex was in wavy crest shape and the size was 56.99 ± 3.74 nm in SEM and TEM analysis, respectively. FTIR data illustrated that Lipo@BBR has four significant peaks at 1250, 1459, 1736, and 2907 cm<sup>−1</sup>. DLS data showed that Lipo@BBR has a negative surface charge with a −10.7 Zeta Potential (mV). Additionally, based on Zetasizer measurements, the size of Lipo@BBR complex was 82.7 ± 6.5. Cytotoxicity assay investigation with MTT assay presented that IC<sub>50</sub> of Lipo@BBR in PDT was 10 ± 0.5 μg/mL that led to a volume reduction of the A549 spheroids after five sessions of PDT fractionation (total light dose was set at 25 J/cm<sup>2</sup>). qPCR and immunofluorescence results demonstrated that Lipo@BBR increases the BAX/BCL2 ratio in A549 spheroid cells, hence improving PDT efficiency. In conclusion, our results illustrated that safe dose of Lipo@BBR (10 ± 0.5 μg/mL) in PDT fractionation protocol can be one of the strategies to suppress the tumor volume and cell death proliferation. Authors recommend using Lipo@BBR nanocomplex in PDT fractionation as well as more <em>in vivo</em> investigation is warranted.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"40 \",\"pages\":\"Article 101877\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580824002413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824002413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Application of liposomal nanoparticles of berberine in photodynamic therapy of A549 lung cancer spheroids
Application of liposomes is a critical strategy in drug delivery and increase cellular uptake of drugs having low water solubility. Berberine (BBR) is a bioactive compound found in several plants, including Goldenseal, Barberry, and Oregon grape. It has garnered attention for its various health benefits, particularly in metabolic health and antimicrobial activity. However, one of the challenges associated with BBR is its water solubility. Moreover, BBR has photosensitizing potential via absorbance of light and generation of free radicals. Hence, to improve water solubility and bioavailability, one of the important strategies employed is using lipid-based carriers to enhance solubility. In this study we employed liposomes to deliver BBR in A549 lung cancer spheroid cells to enhance photodynamic therapy efficacies. Results from the EDS and UV–Vis spectroscopy revealed that the BBR had been loaded onto liposomes, with three peaks appearing between 250 and 450 nm. Morphology of Lipo@BBR nanocomplex was in wavy crest shape and the size was 56.99 ± 3.74 nm in SEM and TEM analysis, respectively. FTIR data illustrated that Lipo@BBR has four significant peaks at 1250, 1459, 1736, and 2907 cm−1. DLS data showed that Lipo@BBR has a negative surface charge with a −10.7 Zeta Potential (mV). Additionally, based on Zetasizer measurements, the size of Lipo@BBR complex was 82.7 ± 6.5. Cytotoxicity assay investigation with MTT assay presented that IC50 of Lipo@BBR in PDT was 10 ± 0.5 μg/mL that led to a volume reduction of the A549 spheroids after five sessions of PDT fractionation (total light dose was set at 25 J/cm2). qPCR and immunofluorescence results demonstrated that Lipo@BBR increases the BAX/BCL2 ratio in A549 spheroid cells, hence improving PDT efficiency. In conclusion, our results illustrated that safe dose of Lipo@BBR (10 ± 0.5 μg/mL) in PDT fractionation protocol can be one of the strategies to suppress the tumor volume and cell death proliferation. Authors recommend using Lipo@BBR nanocomplex in PDT fractionation as well as more in vivo investigation is warranted.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.