Farah Ibrahim , Alexandre Sala , Armand Fahs , Aoife Morrin , Clément Nanteuil , Guillaume Laffite , Ian A. Nicholls , Fiona Regan , Hugues Brisset , Catherine Branger
{"title":"将电化学分子印迹聚合物修饰金电极作为多环芳烃痕量电分析选择层的研究","authors":"Farah Ibrahim , Alexandre Sala , Armand Fahs , Aoife Morrin , Clément Nanteuil , Guillaume Laffite , Ian A. Nicholls , Fiona Regan , Hugues Brisset , Catherine Branger","doi":"10.1016/j.elecom.2024.107837","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical molecularly imprinted polymers (e-MIPs) were grafted for the first time as a thin layer to the surface of a gold electrode to perform trace level electroanalysis of benzo(a)pyrene (BaP). This was achieved by controlled/living radical photopolymerization of a redox tracer monomer (ferrocenylmethyl methacrylate, FcMMA) with ethylene glycol dimethacrylate in the presence of benzo(a)pyrene as the template molecule. For that purpose, a novel photoiniferter-derived SAM was first deposited on the gold surface. The SAM formation was monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Then, the “grafting from” of the e-MIP was achieved upon photoirradiation during a controlled time. Differential pulse voltammetry was used to quantify BaP in aqueous solution by following the modification of the signal of FcMMA. A limit of detection of 0.19 nM in water and a linear range of 0.66 nM to 4.30 nM, were determined, thus validating the enhancement of sensitivity induced by the close contact between the e-MIP and the electrode, and the improved transfer electron.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107837"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH\",\"authors\":\"Farah Ibrahim , Alexandre Sala , Armand Fahs , Aoife Morrin , Clément Nanteuil , Guillaume Laffite , Ian A. Nicholls , Fiona Regan , Hugues Brisset , Catherine Branger\",\"doi\":\"10.1016/j.elecom.2024.107837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrochemical molecularly imprinted polymers (e-MIPs) were grafted for the first time as a thin layer to the surface of a gold electrode to perform trace level electroanalysis of benzo(a)pyrene (BaP). This was achieved by controlled/living radical photopolymerization of a redox tracer monomer (ferrocenylmethyl methacrylate, FcMMA) with ethylene glycol dimethacrylate in the presence of benzo(a)pyrene as the template molecule. For that purpose, a novel photoiniferter-derived SAM was first deposited on the gold surface. The SAM formation was monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Then, the “grafting from” of the e-MIP was achieved upon photoirradiation during a controlled time. Differential pulse voltammetry was used to quantify BaP in aqueous solution by following the modification of the signal of FcMMA. A limit of detection of 0.19 nM in water and a linear range of 0.66 nM to 4.30 nM, were determined, thus validating the enhancement of sensitivity induced by the close contact between the e-MIP and the electrode, and the improved transfer electron.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"169 \",\"pages\":\"Article 107837\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001802\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001802","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH
Electrochemical molecularly imprinted polymers (e-MIPs) were grafted for the first time as a thin layer to the surface of a gold electrode to perform trace level electroanalysis of benzo(a)pyrene (BaP). This was achieved by controlled/living radical photopolymerization of a redox tracer monomer (ferrocenylmethyl methacrylate, FcMMA) with ethylene glycol dimethacrylate in the presence of benzo(a)pyrene as the template molecule. For that purpose, a novel photoiniferter-derived SAM was first deposited on the gold surface. The SAM formation was monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Then, the “grafting from” of the e-MIP was achieved upon photoirradiation during a controlled time. Differential pulse voltammetry was used to quantify BaP in aqueous solution by following the modification of the signal of FcMMA. A limit of detection of 0.19 nM in water and a linear range of 0.66 nM to 4.30 nM, were determined, thus validating the enhancement of sensitivity induced by the close contact between the e-MIP and the electrode, and the improved transfer electron.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.