里帕和污染物传输模型的正性和边界保持良好平衡的高阶紧凑有限差分方案

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Baifen Ren , Bao-Shan Wang , Xiangxiong Zhang , Zhen Gao
{"title":"里帕和污染物传输模型的正性和边界保持良好平衡的高阶紧凑有限差分方案","authors":"Baifen Ren ,&nbsp;Bao-Shan Wang ,&nbsp;Xiangxiong Zhang ,&nbsp;Zhen Gao","doi":"10.1016/j.camwa.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>We construct a fourth-order accurate compact finite difference scheme that is well-balanced, positivity-preserving of water height, and bound-preserving of temperature for Ripa and concentration for pollutant transport systems. The proposed scheme preserves the still-water steady state and the positivity of water height. It also maintains concentration bounds for pollutants across nonflat bottom topographies, regardless of the presence of a pollutant source. Our approach incorporates water height and pollutant concentration constraints within the same discretization, utilizing weak monotonicity and a simple bound-preserving limiter while preserving the well-balanced property. Through extensive numerical simulations encompassing Ripa and pollutant transport models, we demonstrate the effectiveness of our method, verifying its well-balanced property, high-order accuracy, positivity-preserving, and bound-preserving capabilities.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"176 ","pages":"Pages 545-563"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positivity and bound preserving well-balanced high order compact finite difference scheme for Ripa and pollutant transport model\",\"authors\":\"Baifen Ren ,&nbsp;Bao-Shan Wang ,&nbsp;Xiangxiong Zhang ,&nbsp;Zhen Gao\",\"doi\":\"10.1016/j.camwa.2024.11.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct a fourth-order accurate compact finite difference scheme that is well-balanced, positivity-preserving of water height, and bound-preserving of temperature for Ripa and concentration for pollutant transport systems. The proposed scheme preserves the still-water steady state and the positivity of water height. It also maintains concentration bounds for pollutants across nonflat bottom topographies, regardless of the presence of a pollutant source. Our approach incorporates water height and pollutant concentration constraints within the same discretization, utilizing weak monotonicity and a simple bound-preserving limiter while preserving the well-balanced property. Through extensive numerical simulations encompassing Ripa and pollutant transport models, we demonstrate the effectiveness of our method, verifying its well-balanced property, high-order accuracy, positivity-preserving, and bound-preserving capabilities.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"176 \",\"pages\":\"Pages 545-563\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124005091\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124005091","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一种四阶精确紧凑有限差分方案,该方案具有良好的平衡性、水高的正保性以及里帕温度和污染物传输系统浓度的边界保性。所提出的方案保留了静水稳态和水高的实在性。它还能在非平底地形中保持污染物的浓度边界,无论是否存在污染源。我们的方法利用弱单调性和简单的边界保护限制器,在保持良好平衡特性的同时,将水高和污染物浓度约束纳入同一离散化过程。通过对 Ripa 和污染物传输模型进行广泛的数值模拟,我们证明了我们方法的有效性,验证了其良好平衡特性、高阶精度、正向保留和边界保留能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positivity and bound preserving well-balanced high order compact finite difference scheme for Ripa and pollutant transport model
We construct a fourth-order accurate compact finite difference scheme that is well-balanced, positivity-preserving of water height, and bound-preserving of temperature for Ripa and concentration for pollutant transport systems. The proposed scheme preserves the still-water steady state and the positivity of water height. It also maintains concentration bounds for pollutants across nonflat bottom topographies, regardless of the presence of a pollutant source. Our approach incorporates water height and pollutant concentration constraints within the same discretization, utilizing weak monotonicity and a simple bound-preserving limiter while preserving the well-balanced property. Through extensive numerical simulations encompassing Ripa and pollutant transport models, we demonstrate the effectiveness of our method, verifying its well-balanced property, high-order accuracy, positivity-preserving, and bound-preserving capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信