{"title":"里帕和污染物传输模型的正性和边界保持良好平衡的高阶紧凑有限差分方案","authors":"Baifen Ren , Bao-Shan Wang , Xiangxiong Zhang , Zhen Gao","doi":"10.1016/j.camwa.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>We construct a fourth-order accurate compact finite difference scheme that is well-balanced, positivity-preserving of water height, and bound-preserving of temperature for Ripa and concentration for pollutant transport systems. The proposed scheme preserves the still-water steady state and the positivity of water height. It also maintains concentration bounds for pollutants across nonflat bottom topographies, regardless of the presence of a pollutant source. Our approach incorporates water height and pollutant concentration constraints within the same discretization, utilizing weak monotonicity and a simple bound-preserving limiter while preserving the well-balanced property. Through extensive numerical simulations encompassing Ripa and pollutant transport models, we demonstrate the effectiveness of our method, verifying its well-balanced property, high-order accuracy, positivity-preserving, and bound-preserving capabilities.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"176 ","pages":"Pages 545-563"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positivity and bound preserving well-balanced high order compact finite difference scheme for Ripa and pollutant transport model\",\"authors\":\"Baifen Ren , Bao-Shan Wang , Xiangxiong Zhang , Zhen Gao\",\"doi\":\"10.1016/j.camwa.2024.11.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct a fourth-order accurate compact finite difference scheme that is well-balanced, positivity-preserving of water height, and bound-preserving of temperature for Ripa and concentration for pollutant transport systems. The proposed scheme preserves the still-water steady state and the positivity of water height. It also maintains concentration bounds for pollutants across nonflat bottom topographies, regardless of the presence of a pollutant source. Our approach incorporates water height and pollutant concentration constraints within the same discretization, utilizing weak monotonicity and a simple bound-preserving limiter while preserving the well-balanced property. Through extensive numerical simulations encompassing Ripa and pollutant transport models, we demonstrate the effectiveness of our method, verifying its well-balanced property, high-order accuracy, positivity-preserving, and bound-preserving capabilities.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"176 \",\"pages\":\"Pages 545-563\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124005091\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124005091","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Positivity and bound preserving well-balanced high order compact finite difference scheme for Ripa and pollutant transport model
We construct a fourth-order accurate compact finite difference scheme that is well-balanced, positivity-preserving of water height, and bound-preserving of temperature for Ripa and concentration for pollutant transport systems. The proposed scheme preserves the still-water steady state and the positivity of water height. It also maintains concentration bounds for pollutants across nonflat bottom topographies, regardless of the presence of a pollutant source. Our approach incorporates water height and pollutant concentration constraints within the same discretization, utilizing weak monotonicity and a simple bound-preserving limiter while preserving the well-balanced property. Through extensive numerical simulations encompassing Ripa and pollutant transport models, we demonstrate the effectiveness of our method, verifying its well-balanced property, high-order accuracy, positivity-preserving, and bound-preserving capabilities.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).