使用密度平滑 B-样条材料点法和接触法模拟流固相互作用

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Zheng Sun, Yunjun Hua, Yunqing Xu, Xiaomin Zhou
{"title":"使用密度平滑 B-样条材料点法和接触法模拟流固相互作用","authors":"Zheng Sun,&nbsp;Yunjun Hua,&nbsp;Yunqing Xu,&nbsp;Xiaomin Zhou","doi":"10.1016/j.camwa.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>Fluid-structure interaction (FSI) problems with strong nonlinearity and multidisciplinarity pose challenges for current numerical FSI algorithms. This work proposes a monolithic strategy for solving the equations of motion for both the fluid and structural domains under the unique Lagrangian framework of the B-spline material point method (BSMPM). A node-based density smoothing BSMPM (referred to as ds-BSMPM) is proposed to eliminate pressure instability and oscillation in the simulation of weakly compressible fluids, which is straightforwardly implemented using B-spline basis functions without the need for any sophisticated particle search algorithm. The interaction between the fluid and structure is conducted using the Lagrangian multiplier method on the tensor product grid, whose actual position is determined by the Greville abscissa and is used to detect contact. The proposed method is verified and validated against existing numerical approaches and experimental results, demonstrating the effectiveness of the proposed method in eliminating the oscillations of water pressure and solid stress, and avoiding premature and erroneous contact. In particular, this work presents a promising monolithic approach for achieving high-fidelity solutions to complex FSI problems.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"176 ","pages":"Pages 525-544"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of fluid-structure interaction using the density smoothing B-spline material point method with a contact approach\",\"authors\":\"Zheng Sun,&nbsp;Yunjun Hua,&nbsp;Yunqing Xu,&nbsp;Xiaomin Zhou\",\"doi\":\"10.1016/j.camwa.2024.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fluid-structure interaction (FSI) problems with strong nonlinearity and multidisciplinarity pose challenges for current numerical FSI algorithms. This work proposes a monolithic strategy for solving the equations of motion for both the fluid and structural domains under the unique Lagrangian framework of the B-spline material point method (BSMPM). A node-based density smoothing BSMPM (referred to as ds-BSMPM) is proposed to eliminate pressure instability and oscillation in the simulation of weakly compressible fluids, which is straightforwardly implemented using B-spline basis functions without the need for any sophisticated particle search algorithm. The interaction between the fluid and structure is conducted using the Lagrangian multiplier method on the tensor product grid, whose actual position is determined by the Greville abscissa and is used to detect contact. The proposed method is verified and validated against existing numerical approaches and experimental results, demonstrating the effectiveness of the proposed method in eliminating the oscillations of water pressure and solid stress, and avoiding premature and erroneous contact. In particular, this work presents a promising monolithic approach for achieving high-fidelity solutions to complex FSI problems.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"176 \",\"pages\":\"Pages 525-544\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004991\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004991","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

流固耦合(FSI)问题具有很强的非线性和多学科性,给当前的流固耦合数值算法带来了挑战。本研究提出了一种整体策略,在 B-样条材料点法(BSMPM)的独特拉格朗日框架下求解流体和结构域的运动方程。我们提出了一种基于节点的密度平滑 BSMPM(简称 ds-BSMPM),以消除弱可压缩流体模拟中的压力不稳定性和振荡,该方法使用 B 样条基函数直接实现,无需任何复杂的粒子搜索算法。流体与结构之间的相互作用是在张量乘积网格上使用拉格朗日乘法进行的,网格的实际位置由格雷维尔横座标决定,并用于检测接触。通过与现有的数值方法和实验结果进行验证,证明了所提出的方法在消除水压和固体应力振荡、避免过早和错误接触方面的有效性。特别是,这项工作为实现复杂 FSI 问题的高保真解决方案提出了一种很有前途的整体方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of fluid-structure interaction using the density smoothing B-spline material point method with a contact approach
Fluid-structure interaction (FSI) problems with strong nonlinearity and multidisciplinarity pose challenges for current numerical FSI algorithms. This work proposes a monolithic strategy for solving the equations of motion for both the fluid and structural domains under the unique Lagrangian framework of the B-spline material point method (BSMPM). A node-based density smoothing BSMPM (referred to as ds-BSMPM) is proposed to eliminate pressure instability and oscillation in the simulation of weakly compressible fluids, which is straightforwardly implemented using B-spline basis functions without the need for any sophisticated particle search algorithm. The interaction between the fluid and structure is conducted using the Lagrangian multiplier method on the tensor product grid, whose actual position is determined by the Greville abscissa and is used to detect contact. The proposed method is verified and validated against existing numerical approaches and experimental results, demonstrating the effectiveness of the proposed method in eliminating the oscillations of water pressure and solid stress, and avoiding premature and erroneous contact. In particular, this work presents a promising monolithic approach for achieving high-fidelity solutions to complex FSI problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信