解决 PDE 受限优化问题的深度混合残差法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jinjun Yong , Xianbing Luo , Shuyu Sun , Changlun Ye
{"title":"解决 PDE 受限优化问题的深度混合残差法","authors":"Jinjun Yong ,&nbsp;Xianbing Luo ,&nbsp;Shuyu Sun ,&nbsp;Changlun Ye","doi":"10.1016/j.camwa.2024.11.009","DOIUrl":null,"url":null,"abstract":"<div><div>The deep mixed residual method (DeepMRM) is a technique to solve partial differential equation. In this paper, it is applied to tackle PDE-constrained optimization problems (PDE-COPs). For a PDE-COP, we transform it into an optimality system, and then employ mixed residual method (MRM) on this system. By implementing the DeepMRM with three different network structures (fully connected neural network, residual network, and attention fully connected neural network), we successfully solve PDE-COPs including elliptic, semi-linear elliptic, and Navier-Stokes (NS) equation constrained optimization problems. Compared with the exact or high-fidelity solutions, the DeepMRM provides an effective approach for solving PDE-COPs using the three different network structures.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"176 ","pages":"Pages 510-524"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep mixed residual method for solving PDE-constrained optimization problems\",\"authors\":\"Jinjun Yong ,&nbsp;Xianbing Luo ,&nbsp;Shuyu Sun ,&nbsp;Changlun Ye\",\"doi\":\"10.1016/j.camwa.2024.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The deep mixed residual method (DeepMRM) is a technique to solve partial differential equation. In this paper, it is applied to tackle PDE-constrained optimization problems (PDE-COPs). For a PDE-COP, we transform it into an optimality system, and then employ mixed residual method (MRM) on this system. By implementing the DeepMRM with three different network structures (fully connected neural network, residual network, and attention fully connected neural network), we successfully solve PDE-COPs including elliptic, semi-linear elliptic, and Navier-Stokes (NS) equation constrained optimization problems. Compared with the exact or high-fidelity solutions, the DeepMRM provides an effective approach for solving PDE-COPs using the three different network structures.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"176 \",\"pages\":\"Pages 510-524\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212400508X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212400508X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

深度混合残差法(DeepMRM)是一种求解偏微分方程的技术。本文将其应用于解决 PDE 约束优化问题(PDE-COPs)。对于 PDE-COP,我们将其转化为一个优化系统,然后在该系统上采用混合残差法(MRM)。通过使用三种不同的网络结构(全连接神经网络、残差网络和关注全连接神经网络)实现 DeepMRM,我们成功地解决了包括椭圆、半线性椭圆和纳维-斯托克斯(NS)方程约束优化问题在内的 PDE-COPs 问题。与精确解或高保真解相比,DeepMRM 提供了一种利用三种不同网络结构求解 PDE-COP 的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep mixed residual method for solving PDE-constrained optimization problems
The deep mixed residual method (DeepMRM) is a technique to solve partial differential equation. In this paper, it is applied to tackle PDE-constrained optimization problems (PDE-COPs). For a PDE-COP, we transform it into an optimality system, and then employ mixed residual method (MRM) on this system. By implementing the DeepMRM with three different network structures (fully connected neural network, residual network, and attention fully connected neural network), we successfully solve PDE-COPs including elliptic, semi-linear elliptic, and Navier-Stokes (NS) equation constrained optimization problems. Compared with the exact or high-fidelity solutions, the DeepMRM provides an effective approach for solving PDE-COPs using the three different network structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信