George Titakis , Iasson Karafyllis , Dionysios Theodosis , Ioannis Papamichail , Markos Papageorgiou
{"title":"宏观自动驾驶汽车交通流模型近似解数值方法比较研究","authors":"George Titakis , Iasson Karafyllis , Dionysios Theodosis , Ioannis Papamichail , Markos Papageorgiou","doi":"10.1016/j.camwa.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a particle method is used to approximate the solutions of a “fluid-like” macroscopic traffic flow model for automated vehicles. It is shown that this method preserves certain differential inequalities that hold for the macroscopic traffic model: mass is preserved, the mechanical energy is decaying and an energy functional is also decaying. To demonstrate the advantages of the particle method under consideration, a comparison with other numerical methods for viscous compressible fluid models is provided. Since the solutions of the macroscopic traffic model can be approximated by the solutions of a reduced model consisting of a single nonlinear heat-type partial differential equation, the numerical solutions produced by the particle method are also compared with the numerical solutions of the reduced model. Finally, a traffic simulation scenario and a comparison with the Aw-Rascle-Zhang (ARZ) model are provided, illustrating the advantages of the use of automated vehicles.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"176 ","pages":"Pages 469-490"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of numerical methods for approximating the solutions of a macroscopic automated-vehicle traffic flow model\",\"authors\":\"George Titakis , Iasson Karafyllis , Dionysios Theodosis , Ioannis Papamichail , Markos Papageorgiou\",\"doi\":\"10.1016/j.camwa.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a particle method is used to approximate the solutions of a “fluid-like” macroscopic traffic flow model for automated vehicles. It is shown that this method preserves certain differential inequalities that hold for the macroscopic traffic model: mass is preserved, the mechanical energy is decaying and an energy functional is also decaying. To demonstrate the advantages of the particle method under consideration, a comparison with other numerical methods for viscous compressible fluid models is provided. Since the solutions of the macroscopic traffic model can be approximated by the solutions of a reduced model consisting of a single nonlinear heat-type partial differential equation, the numerical solutions produced by the particle method are also compared with the numerical solutions of the reduced model. Finally, a traffic simulation scenario and a comparison with the Aw-Rascle-Zhang (ARZ) model are provided, illustrating the advantages of the use of automated vehicles.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"176 \",\"pages\":\"Pages 469-490\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212400498X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212400498X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A comparative study of numerical methods for approximating the solutions of a macroscopic automated-vehicle traffic flow model
In this paper, a particle method is used to approximate the solutions of a “fluid-like” macroscopic traffic flow model for automated vehicles. It is shown that this method preserves certain differential inequalities that hold for the macroscopic traffic model: mass is preserved, the mechanical energy is decaying and an energy functional is also decaying. To demonstrate the advantages of the particle method under consideration, a comparison with other numerical methods for viscous compressible fluid models is provided. Since the solutions of the macroscopic traffic model can be approximated by the solutions of a reduced model consisting of a single nonlinear heat-type partial differential equation, the numerical solutions produced by the particle method are also compared with the numerical solutions of the reduced model. Finally, a traffic simulation scenario and a comparison with the Aw-Rascle-Zhang (ARZ) model are provided, illustrating the advantages of the use of automated vehicles.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).