{"title":"基于 TS2Vec 和分布式变压器的碳补贴价格概率密度预测","authors":"Xuerui Wang, Lin Wang, Wuyue An","doi":"10.1016/j.eneco.2024.107986","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon allowance price is an important tool to reduce carbon emissions and achieve carbon neutrality. It is necessary to establish a predictive model to provide accurate and reliable information to managers and participants in the carbon trading market. Therefore, a novel probability density prediction model, called TS2Vec-based distribution Transformer (TDT), is proposed. TDT consists of two stages: contrastive unsupervised pre-training and supervised training. In the contrastive unsupervised training stage, time series to vector (TS2Vec) is used to represent the dynamic trends and unique features of the data. Then, these representations are fed into the distribution Transformer (DT) to fit the hypothetical probability distribution. Experimental results show that the prediction results of the proposed TDT are more accurate and reliable than other benchmark models. In addition, our research indicates reliable probability density predictions provide enterprises with opportunities to control carbon emission costs and increase economic returns, thereby improving the competitiveness of enterprises and promoting carbon emission reduction.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"140 ","pages":"Article 107986"},"PeriodicalIF":13.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability density prediction for carbon allowance prices based on TS2Vec and distribution Transformer\",\"authors\":\"Xuerui Wang, Lin Wang, Wuyue An\",\"doi\":\"10.1016/j.eneco.2024.107986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon allowance price is an important tool to reduce carbon emissions and achieve carbon neutrality. It is necessary to establish a predictive model to provide accurate and reliable information to managers and participants in the carbon trading market. Therefore, a novel probability density prediction model, called TS2Vec-based distribution Transformer (TDT), is proposed. TDT consists of two stages: contrastive unsupervised pre-training and supervised training. In the contrastive unsupervised training stage, time series to vector (TS2Vec) is used to represent the dynamic trends and unique features of the data. Then, these representations are fed into the distribution Transformer (DT) to fit the hypothetical probability distribution. Experimental results show that the prediction results of the proposed TDT are more accurate and reliable than other benchmark models. In addition, our research indicates reliable probability density predictions provide enterprises with opportunities to control carbon emission costs and increase economic returns, thereby improving the competitiveness of enterprises and promoting carbon emission reduction.</div></div>\",\"PeriodicalId\":11665,\"journal\":{\"name\":\"Energy Economics\",\"volume\":\"140 \",\"pages\":\"Article 107986\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140988324006947\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988324006947","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Probability density prediction for carbon allowance prices based on TS2Vec and distribution Transformer
Carbon allowance price is an important tool to reduce carbon emissions and achieve carbon neutrality. It is necessary to establish a predictive model to provide accurate and reliable information to managers and participants in the carbon trading market. Therefore, a novel probability density prediction model, called TS2Vec-based distribution Transformer (TDT), is proposed. TDT consists of two stages: contrastive unsupervised pre-training and supervised training. In the contrastive unsupervised training stage, time series to vector (TS2Vec) is used to represent the dynamic trends and unique features of the data. Then, these representations are fed into the distribution Transformer (DT) to fit the hypothetical probability distribution. Experimental results show that the prediction results of the proposed TDT are more accurate and reliable than other benchmark models. In addition, our research indicates reliable probability density predictions provide enterprises with opportunities to control carbon emission costs and increase economic returns, thereby improving the competitiveness of enterprises and promoting carbon emission reduction.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.