Moutaz Aldrdery , Muhammad Aadil , Awais Khalid , Mazen R. Alrahili , Muawya Elhadi , Faisal Alresheedi , Meri Algarni , Mohamed.R. El-Aassar , Atef El Jery
{"title":"用于湮灭乙酰水杨酸和结晶紫的水热合成分层 Pom-Pom 样钆修饰氧化钨增强 rGO","authors":"Moutaz Aldrdery , Muhammad Aadil , Awais Khalid , Mazen R. Alrahili , Muawya Elhadi , Faisal Alresheedi , Meri Algarni , Mohamed.R. El-Aassar , Atef El Jery","doi":"10.1016/j.surfin.2024.105396","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, novel hierarchical Gd@WO<sub>3</sub> pom-pom-like microstructures have been prepared through the hydrothermal method and combined with RGO sheets (denoted as RGO/Gd@WO<sub>3</sub>). The synthesized materials, along with their analogs, were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), Mott-Schottky, current-voltage (I-V), electrochemical impedance spectroscopy (EIS), and optical analyses. The unique morphology of pom-pom-like microstructures allowed better interaction with pollutant molecules. Rare earth element (Gd<sup>3+</sup>) ions act as trapping species for photo-generated electrons and prolong the life span of reactive oxygen species (ROS). The high conductivity and flexible nature of RGO sheets provided fast transport of active species and provided stability to the photocatalytic material. To test the photocatalytic efficiency of RGO/Gd@WO<sub>3</sub>, crystal violet (CV) and acetylsalicylic acid (ASA) were used as model pollutants. Under a mimetic light source, RGO/Gd@WO<sub>3</sub> exhibited maximum photodegradation of 98.8 % and 84 % for CV and ASA within 120 min of irradiation, respectively. Photocurrent, Mott-Schottky, and EIS experiments proved the production, effective separation, and transmission of photo-active species in the presence of RGO/Gd@WO<sub>3</sub> as compared to Gd@WO<sub>3</sub> and WO<sub>3</sub>. Given the electrochemical testing and optical analysis, the photocatalytic mechanism is anticipated for the high photocatalytic activity of RGO/Gd@WO<sub>3</sub>. The novel RGO/Gd@WO<sub>3</sub> photocatalyst proved to be a superior photocatalytic material for the photodegradation of organic pollutants.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105396"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermally synthesized hierarchical Pom-Pom-like gadolinium modified tungsten oxide reinforced with rGO for annihilation of acetylsalicylic acid and crystal violet\",\"authors\":\"Moutaz Aldrdery , Muhammad Aadil , Awais Khalid , Mazen R. Alrahili , Muawya Elhadi , Faisal Alresheedi , Meri Algarni , Mohamed.R. El-Aassar , Atef El Jery\",\"doi\":\"10.1016/j.surfin.2024.105396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, novel hierarchical Gd@WO<sub>3</sub> pom-pom-like microstructures have been prepared through the hydrothermal method and combined with RGO sheets (denoted as RGO/Gd@WO<sub>3</sub>). The synthesized materials, along with their analogs, were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), Mott-Schottky, current-voltage (I-V), electrochemical impedance spectroscopy (EIS), and optical analyses. The unique morphology of pom-pom-like microstructures allowed better interaction with pollutant molecules. Rare earth element (Gd<sup>3+</sup>) ions act as trapping species for photo-generated electrons and prolong the life span of reactive oxygen species (ROS). The high conductivity and flexible nature of RGO sheets provided fast transport of active species and provided stability to the photocatalytic material. To test the photocatalytic efficiency of RGO/Gd@WO<sub>3</sub>, crystal violet (CV) and acetylsalicylic acid (ASA) were used as model pollutants. Under a mimetic light source, RGO/Gd@WO<sub>3</sub> exhibited maximum photodegradation of 98.8 % and 84 % for CV and ASA within 120 min of irradiation, respectively. Photocurrent, Mott-Schottky, and EIS experiments proved the production, effective separation, and transmission of photo-active species in the presence of RGO/Gd@WO<sub>3</sub> as compared to Gd@WO<sub>3</sub> and WO<sub>3</sub>. Given the electrochemical testing and optical analysis, the photocatalytic mechanism is anticipated for the high photocatalytic activity of RGO/Gd@WO<sub>3</sub>. The novel RGO/Gd@WO<sub>3</sub> photocatalyst proved to be a superior photocatalytic material for the photodegradation of organic pollutants.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"55 \",\"pages\":\"Article 105396\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024015529\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015529","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hydrothermally synthesized hierarchical Pom-Pom-like gadolinium modified tungsten oxide reinforced with rGO for annihilation of acetylsalicylic acid and crystal violet
Herein, novel hierarchical Gd@WO3 pom-pom-like microstructures have been prepared through the hydrothermal method and combined with RGO sheets (denoted as RGO/Gd@WO3). The synthesized materials, along with their analogs, were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), Mott-Schottky, current-voltage (I-V), electrochemical impedance spectroscopy (EIS), and optical analyses. The unique morphology of pom-pom-like microstructures allowed better interaction with pollutant molecules. Rare earth element (Gd3+) ions act as trapping species for photo-generated electrons and prolong the life span of reactive oxygen species (ROS). The high conductivity and flexible nature of RGO sheets provided fast transport of active species and provided stability to the photocatalytic material. To test the photocatalytic efficiency of RGO/Gd@WO3, crystal violet (CV) and acetylsalicylic acid (ASA) were used as model pollutants. Under a mimetic light source, RGO/Gd@WO3 exhibited maximum photodegradation of 98.8 % and 84 % for CV and ASA within 120 min of irradiation, respectively. Photocurrent, Mott-Schottky, and EIS experiments proved the production, effective separation, and transmission of photo-active species in the presence of RGO/Gd@WO3 as compared to Gd@WO3 and WO3. Given the electrochemical testing and optical analysis, the photocatalytic mechanism is anticipated for the high photocatalytic activity of RGO/Gd@WO3. The novel RGO/Gd@WO3 photocatalyst proved to be a superior photocatalytic material for the photodegradation of organic pollutants.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)