用于废水净化和染料去除的具有更好压电光催化性能的多层结构硅酸铋反蛋白石薄膜

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Mengshi Chen, Zihan Kang, Jingjing Ning, Ni Qin, Dinghua Bao
{"title":"用于废水净化和染料去除的具有更好压电光催化性能的多层结构硅酸铋反蛋白石薄膜","authors":"Mengshi Chen,&nbsp;Zihan Kang,&nbsp;Jingjing Ning,&nbsp;Ni Qin,&nbsp;Dinghua Bao","doi":"10.1016/j.surfin.2024.105378","DOIUrl":null,"url":null,"abstract":"<div><div>Suppressing the recombination of photogenerated charge carriers is thought to be possible by combining the photocatalytic method with the piezoelectric action of piezoelectric semiconductors. A new piezo-photocatalyst, Bi<sub>2</sub>SiO<sub>5</sub> inverse opal film, was prepared by inverse template method. The introduction of 3D ordered inverse opal structure was favorable for light harvesting. The unique two-dimensional layered structure of Bi<sub>2</sub>SiO<sub>5</sub> facilitates electron-hole (e<sup>-</sup>-<em>h</em><sup>+</sup>) pair separation. The degradation efficiency of Bi<sub>2</sub>SiO<sub>5</sub> inverse opal film is 15 times higher than that of planar- Bi<sub>2</sub>SiO<sub>5</sub> film under UV light alone. When co-excited by UV light and mechanical energy (ultrasonic vibration), the Bi<sub>2</sub>SiO<sub>5</sub> inverse opal film demonstrated a significantly accelerated degradation rate of RhB compared with planar Bi<sub>2</sub>SiO<sub>5</sub> film. The enhanced piezo-photocatalytic efficiency resulted from the effective separation of photogenerated electron-hole pairs in the Bi<sub>2</sub>SiO<sub>5</sub> inverse opal under the inherent piezoelectric field. Consequently, our work offers fresh perspective on piezo-photocatalytic materials based on Bi<sub>2</sub>SiO<sub>5</sub> for effective wastewater treatment.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"55 ","pages":"Article 105378"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilayer structured bismuth silicate inverse opal film with improved piezo-photocatalytic performance for wastewater purification and dyes removal\",\"authors\":\"Mengshi Chen,&nbsp;Zihan Kang,&nbsp;Jingjing Ning,&nbsp;Ni Qin,&nbsp;Dinghua Bao\",\"doi\":\"10.1016/j.surfin.2024.105378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Suppressing the recombination of photogenerated charge carriers is thought to be possible by combining the photocatalytic method with the piezoelectric action of piezoelectric semiconductors. A new piezo-photocatalyst, Bi<sub>2</sub>SiO<sub>5</sub> inverse opal film, was prepared by inverse template method. The introduction of 3D ordered inverse opal structure was favorable for light harvesting. The unique two-dimensional layered structure of Bi<sub>2</sub>SiO<sub>5</sub> facilitates electron-hole (e<sup>-</sup>-<em>h</em><sup>+</sup>) pair separation. The degradation efficiency of Bi<sub>2</sub>SiO<sub>5</sub> inverse opal film is 15 times higher than that of planar- Bi<sub>2</sub>SiO<sub>5</sub> film under UV light alone. When co-excited by UV light and mechanical energy (ultrasonic vibration), the Bi<sub>2</sub>SiO<sub>5</sub> inverse opal film demonstrated a significantly accelerated degradation rate of RhB compared with planar Bi<sub>2</sub>SiO<sub>5</sub> film. The enhanced piezo-photocatalytic efficiency resulted from the effective separation of photogenerated electron-hole pairs in the Bi<sub>2</sub>SiO<sub>5</sub> inverse opal under the inherent piezoelectric field. Consequently, our work offers fresh perspective on piezo-photocatalytic materials based on Bi<sub>2</sub>SiO<sub>5</sub> for effective wastewater treatment.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"55 \",\"pages\":\"Article 105378\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024015347\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015347","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

人们认为,将光催化方法与压电半导体的压电作用相结合,可以抑制光生电荷载流子的重组。利用反模板法制备了一种新型压电光催化剂--Bi2SiO5 反乳白薄膜。三维有序反蛋白石结构的引入有利于光收集。Bi2SiO5 独特的二维层状结构有利于电子-空穴(e--h+)对分离。在紫外光单独照射下,Bi2SiO5 反蛋白石薄膜的降解效率是平面 Bi2SiO5 薄膜的 15 倍。在紫外光和机械能(超声波振动)的共同作用下,Bi2SiO5 反蛋白石薄膜对 RhB 的降解速度明显快于平面 Bi2SiO5 薄膜。压电光催化效率的提高源于在固有压电场作用下,Bi2SiO5 反蛋白石中光生电子-空穴对的有效分离。因此,我们的研究为基于 Bi2SiO5 的压电光催化材料有效处理废水提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multilayer structured bismuth silicate inverse opal film with improved piezo-photocatalytic performance for wastewater purification and dyes removal

Multilayer structured bismuth silicate inverse opal film with improved piezo-photocatalytic performance for wastewater purification and dyes removal
Suppressing the recombination of photogenerated charge carriers is thought to be possible by combining the photocatalytic method with the piezoelectric action of piezoelectric semiconductors. A new piezo-photocatalyst, Bi2SiO5 inverse opal film, was prepared by inverse template method. The introduction of 3D ordered inverse opal structure was favorable for light harvesting. The unique two-dimensional layered structure of Bi2SiO5 facilitates electron-hole (e--h+) pair separation. The degradation efficiency of Bi2SiO5 inverse opal film is 15 times higher than that of planar- Bi2SiO5 film under UV light alone. When co-excited by UV light and mechanical energy (ultrasonic vibration), the Bi2SiO5 inverse opal film demonstrated a significantly accelerated degradation rate of RhB compared with planar Bi2SiO5 film. The enhanced piezo-photocatalytic efficiency resulted from the effective separation of photogenerated electron-hole pairs in the Bi2SiO5 inverse opal under the inherent piezoelectric field. Consequently, our work offers fresh perspective on piezo-photocatalytic materials based on Bi2SiO5 for effective wastewater treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信