{"title":"基于 Zr-BN 的三维互联混合填料对碳纤维增强环氧树脂复合材料摩擦学性能的影响","authors":"Chinmoy Kuila , Animesh Maji , Rajkumar Wagmare , Phani Kumar Mallisetty , Naresh Chandra Murmu , Tapas Kuila","doi":"10.1016/j.triboint.2024.110385","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth of portable electronics requires a multifunctional composite with superior wear capability. Exceptional wear resistance is crucial for preventing early failure of laminated materials in harsh operating conditions. Hence, fabricating novel materials with excellent anti-wear performance is the primary objective in forthcoming integrated devices. The coefficient of friction (COF) and specific wear rate (W<sub>s</sub>) of the fabricated composites were evaluated by tribo-test. The worn surface was analyzed using atomic force microscopy and field emission scanning electron microscopy. Incorporating the hybrid filler improved the wear performance of the corresponding composites. Compared to the CFRP composite, the COF and W<sub>s</sub> of BN (60 %)-ZrO<sub>2</sub>(40 %)/carbon fiber/epoxy composite were reduced by ∼56 % and 92 %, benefiting multifunctional thermal interface applications.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110385"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of 3D interconnected Zr-BN based hybrid filler on the tribological properties of carbon fiber reinforced epoxy composites\",\"authors\":\"Chinmoy Kuila , Animesh Maji , Rajkumar Wagmare , Phani Kumar Mallisetty , Naresh Chandra Murmu , Tapas Kuila\",\"doi\":\"10.1016/j.triboint.2024.110385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid growth of portable electronics requires a multifunctional composite with superior wear capability. Exceptional wear resistance is crucial for preventing early failure of laminated materials in harsh operating conditions. Hence, fabricating novel materials with excellent anti-wear performance is the primary objective in forthcoming integrated devices. The coefficient of friction (COF) and specific wear rate (W<sub>s</sub>) of the fabricated composites were evaluated by tribo-test. The worn surface was analyzed using atomic force microscopy and field emission scanning electron microscopy. Incorporating the hybrid filler improved the wear performance of the corresponding composites. Compared to the CFRP composite, the COF and W<sub>s</sub> of BN (60 %)-ZrO<sub>2</sub>(40 %)/carbon fiber/epoxy composite were reduced by ∼56 % and 92 %, benefiting multifunctional thermal interface applications.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"202 \",\"pages\":\"Article 110385\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X2401137X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X2401137X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of 3D interconnected Zr-BN based hybrid filler on the tribological properties of carbon fiber reinforced epoxy composites
The rapid growth of portable electronics requires a multifunctional composite with superior wear capability. Exceptional wear resistance is crucial for preventing early failure of laminated materials in harsh operating conditions. Hence, fabricating novel materials with excellent anti-wear performance is the primary objective in forthcoming integrated devices. The coefficient of friction (COF) and specific wear rate (Ws) of the fabricated composites were evaluated by tribo-test. The worn surface was analyzed using atomic force microscopy and field emission scanning electron microscopy. Incorporating the hybrid filler improved the wear performance of the corresponding composites. Compared to the CFRP composite, the COF and Ws of BN (60 %)-ZrO2(40 %)/carbon fiber/epoxy composite were reduced by ∼56 % and 92 %, benefiting multifunctional thermal interface applications.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.