A. Saravanan , Y.P. Ragini , S. Karishma , R. Kamalesh , A.S. Vickram
{"title":"回顾生物催化染料降解的机理和新兴前景:反应器系统和优化策略","authors":"A. Saravanan , Y.P. Ragini , S. Karishma , R. Kamalesh , A.S. Vickram","doi":"10.1016/j.gsd.2024.101376","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread use of dyes has resulted in a concerning rise in the discharge of hazardous substances into the environment. The allergenic and carcinogenic properties of dyes pose significant risks to both human health and the environment. Various approaches are being used to address the mounting ecological issues associated with dye pollution. The process of degradation is tedious due to the persistent, recalcitrant, and non-degradable nature of dyes. Biocatalytic degradation represents a promising approach in addressing the environmental impacts caused by synthetic dyes. Biocatalytic techniques use enzymes and microorganisms to break down complex dye compounds. Certain processes, such as redox reactions aided by laccases, azo-reductases, and peroxidases, are involved in the degradation process. The performance and applicability of several bioreactor designs, including batch, continuous, and bed bioreactors, for dye degradation is reviewed. The effectiveness of the bio-catalytic degradation process has been addressed in relation to enhancement techniques including immobilization and genetic modification. The incorporation of cutting-edge technology holds considerable potential for the sustainable treatment of wastewater tainted with dyes, despite obstacles related to the economy and ecology.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101376"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on the mechanisms and emerging prospects of biocatalytic dye degradation: Reactor systems and optimization strategies\",\"authors\":\"A. Saravanan , Y.P. Ragini , S. Karishma , R. Kamalesh , A.S. Vickram\",\"doi\":\"10.1016/j.gsd.2024.101376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The widespread use of dyes has resulted in a concerning rise in the discharge of hazardous substances into the environment. The allergenic and carcinogenic properties of dyes pose significant risks to both human health and the environment. Various approaches are being used to address the mounting ecological issues associated with dye pollution. The process of degradation is tedious due to the persistent, recalcitrant, and non-degradable nature of dyes. Biocatalytic degradation represents a promising approach in addressing the environmental impacts caused by synthetic dyes. Biocatalytic techniques use enzymes and microorganisms to break down complex dye compounds. Certain processes, such as redox reactions aided by laccases, azo-reductases, and peroxidases, are involved in the degradation process. The performance and applicability of several bioreactor designs, including batch, continuous, and bed bioreactors, for dye degradation is reviewed. The effectiveness of the bio-catalytic degradation process has been addressed in relation to enhancement techniques including immobilization and genetic modification. The incorporation of cutting-edge technology holds considerable potential for the sustainable treatment of wastewater tainted with dyes, despite obstacles related to the economy and ecology.</div></div>\",\"PeriodicalId\":37879,\"journal\":{\"name\":\"Groundwater for Sustainable Development\",\"volume\":\"27 \",\"pages\":\"Article 101376\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater for Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352801X24002996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Review on the mechanisms and emerging prospects of biocatalytic dye degradation: Reactor systems and optimization strategies
The widespread use of dyes has resulted in a concerning rise in the discharge of hazardous substances into the environment. The allergenic and carcinogenic properties of dyes pose significant risks to both human health and the environment. Various approaches are being used to address the mounting ecological issues associated with dye pollution. The process of degradation is tedious due to the persistent, recalcitrant, and non-degradable nature of dyes. Biocatalytic degradation represents a promising approach in addressing the environmental impacts caused by synthetic dyes. Biocatalytic techniques use enzymes and microorganisms to break down complex dye compounds. Certain processes, such as redox reactions aided by laccases, azo-reductases, and peroxidases, are involved in the degradation process. The performance and applicability of several bioreactor designs, including batch, continuous, and bed bioreactors, for dye degradation is reviewed. The effectiveness of the bio-catalytic degradation process has been addressed in relation to enhancement techniques including immobilization and genetic modification. The incorporation of cutting-edge technology holds considerable potential for the sustainable treatment of wastewater tainted with dyes, despite obstacles related to the economy and ecology.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.