高性能环氧树脂作为粘合剂取代不环保的酚醛树脂在无铜刹车片中的功效

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Bhaskaranand Bhatt , Umesh Marathe , Navnath Kalel , Jayashree Bijwe
{"title":"高性能环氧树脂作为粘合剂取代不环保的酚醛树脂在无铜刹车片中的功效","authors":"Bhaskaranand Bhatt ,&nbsp;Umesh Marathe ,&nbsp;Navnath Kalel ,&nbsp;Jayashree Bijwe","doi":"10.1016/j.triboint.2024.110359","DOIUrl":null,"url":null,"abstract":"<div><div>This research explored high-performance epoxy resin (EPR) for the first time as a binder in the formulation of brake pads to overcome the limitations of phenolic resins (short shelf life, harmful emissions, etc.) and compared them to phenolic pads to determine their potential. EPRs offered higher heat resistance, lower density, post-curing free, and longer shelf life. Brake pads (15%, 20%, and 25% epoxy, and 20 vol% phenolic) were assessed for physical, mechanical, thermal, tribological, and noise - vibration (NV) properties. The findings revealed promising tribological and NV performance for epoxy pads, suggesting EPR has the potential to replace phenolic resins in the friction industry.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110359"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of high-performance epoxy resin as a binder to replace eco-unfriendly phenolic resins in Cu-free brake pads\",\"authors\":\"Bhaskaranand Bhatt ,&nbsp;Umesh Marathe ,&nbsp;Navnath Kalel ,&nbsp;Jayashree Bijwe\",\"doi\":\"10.1016/j.triboint.2024.110359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research explored high-performance epoxy resin (EPR) for the first time as a binder in the formulation of brake pads to overcome the limitations of phenolic resins (short shelf life, harmful emissions, etc.) and compared them to phenolic pads to determine their potential. EPRs offered higher heat resistance, lower density, post-curing free, and longer shelf life. Brake pads (15%, 20%, and 25% epoxy, and 20 vol% phenolic) were assessed for physical, mechanical, thermal, tribological, and noise - vibration (NV) properties. The findings revealed promising tribological and NV performance for epoxy pads, suggesting EPR has the potential to replace phenolic resins in the friction industry.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"202 \",\"pages\":\"Article 110359\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X24011113\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24011113","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究首次探索将高性能环氧树脂(EPR)作为制动片配方的粘合剂,以克服酚醛树脂的局限性(保质期短、有害气体排放等),并将其与酚醛制动片进行比较,以确定其潜力。EPR 具有更高的耐热性、更低的密度、无后固化和更长的保质期。对刹车片(15%、20% 和 25% 环氧树脂,以及 20 Vol% 酚醛树脂)的物理、机械、热、摩擦学和噪音-振动(NV)特性进行了评估。研究结果表明,环氧刹车片具有良好的摩擦学和 NV 性能,这表明 EPR 有潜力取代摩擦工业中的酚醛树脂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficacy of high-performance epoxy resin as a binder to replace eco-unfriendly phenolic resins in Cu-free brake pads
This research explored high-performance epoxy resin (EPR) for the first time as a binder in the formulation of brake pads to overcome the limitations of phenolic resins (short shelf life, harmful emissions, etc.) and compared them to phenolic pads to determine their potential. EPRs offered higher heat resistance, lower density, post-curing free, and longer shelf life. Brake pads (15%, 20%, and 25% epoxy, and 20 vol% phenolic) were assessed for physical, mechanical, thermal, tribological, and noise - vibration (NV) properties. The findings revealed promising tribological and NV performance for epoxy pads, suggesting EPR has the potential to replace phenolic resins in the friction industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信