{"title":"多环芳烃污染场地强化微生物生物修复战略的关键分析:毒性和技术经济分析","authors":"Y.P. Ragini , Jeyanthi Palanivelu , R.V. Hemavathy","doi":"10.1016/j.gsd.2024.101369","DOIUrl":null,"url":null,"abstract":"<div><div>Polycyclic aromatic hydrocarbons (PAHs) pose significant threats to environmental integrity and public health due to their high toxicity, persistence, and potential for bioaccumulation. In contaminated soils, PAH concentrations typically range from 1 to 100 mg/kg, with severely polluted areas reaching up to 1000 mg/kg. Conventional bioremediation techniques, limited to 30–50% efficiency, underscore the need for more effective solutions. This review highlights recent advancements in microbial bioremediation strategies, demonstrating removal efficiencies of 80–90% through the utilization of functional microorganisms, which metabolize PAHs into non-toxic compounds. Innovative techniques such as genetic engineering, microbial immobilization, and nanotechnology are shown to achieve over 90% pollutant removal. The review discusses key metabolic pathways and enzymatic processes driving PAH degradation, such as ring-hydroxylation and oxygenation. Techno-economic assessments indicate up to 40% cost savings and improved energy efficiency compared to conventional methods, facilitating scalability for large-scale environmental restoration projects. Microbial solutions for groundwater pollution, where PAH levels often exceed the maximum contaminant level (MCL) of 0.2 μg/L, are found to be highly effective in mitigating ecological risks and protecting public health. This comprehensive analysis highlights the promising role of advanced microbial bioremediation techniques in addressing PAH contamination across diverse ecosystems, including soils, sediments, and aquatic environments.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101369"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical analysis of enhanced microbial bioremediation strategies of PAHs contaminated sites: Toxicity and techno-economic analysis\",\"authors\":\"Y.P. Ragini , Jeyanthi Palanivelu , R.V. Hemavathy\",\"doi\":\"10.1016/j.gsd.2024.101369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polycyclic aromatic hydrocarbons (PAHs) pose significant threats to environmental integrity and public health due to their high toxicity, persistence, and potential for bioaccumulation. In contaminated soils, PAH concentrations typically range from 1 to 100 mg/kg, with severely polluted areas reaching up to 1000 mg/kg. Conventional bioremediation techniques, limited to 30–50% efficiency, underscore the need for more effective solutions. This review highlights recent advancements in microbial bioremediation strategies, demonstrating removal efficiencies of 80–90% through the utilization of functional microorganisms, which metabolize PAHs into non-toxic compounds. Innovative techniques such as genetic engineering, microbial immobilization, and nanotechnology are shown to achieve over 90% pollutant removal. The review discusses key metabolic pathways and enzymatic processes driving PAH degradation, such as ring-hydroxylation and oxygenation. Techno-economic assessments indicate up to 40% cost savings and improved energy efficiency compared to conventional methods, facilitating scalability for large-scale environmental restoration projects. Microbial solutions for groundwater pollution, where PAH levels often exceed the maximum contaminant level (MCL) of 0.2 μg/L, are found to be highly effective in mitigating ecological risks and protecting public health. This comprehensive analysis highlights the promising role of advanced microbial bioremediation techniques in addressing PAH contamination across diverse ecosystems, including soils, sediments, and aquatic environments.</div></div>\",\"PeriodicalId\":37879,\"journal\":{\"name\":\"Groundwater for Sustainable Development\",\"volume\":\"27 \",\"pages\":\"Article 101369\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater for Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352801X24002923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Critical analysis of enhanced microbial bioremediation strategies of PAHs contaminated sites: Toxicity and techno-economic analysis
Polycyclic aromatic hydrocarbons (PAHs) pose significant threats to environmental integrity and public health due to their high toxicity, persistence, and potential for bioaccumulation. In contaminated soils, PAH concentrations typically range from 1 to 100 mg/kg, with severely polluted areas reaching up to 1000 mg/kg. Conventional bioremediation techniques, limited to 30–50% efficiency, underscore the need for more effective solutions. This review highlights recent advancements in microbial bioremediation strategies, demonstrating removal efficiencies of 80–90% through the utilization of functional microorganisms, which metabolize PAHs into non-toxic compounds. Innovative techniques such as genetic engineering, microbial immobilization, and nanotechnology are shown to achieve over 90% pollutant removal. The review discusses key metabolic pathways and enzymatic processes driving PAH degradation, such as ring-hydroxylation and oxygenation. Techno-economic assessments indicate up to 40% cost savings and improved energy efficiency compared to conventional methods, facilitating scalability for large-scale environmental restoration projects. Microbial solutions for groundwater pollution, where PAH levels often exceed the maximum contaminant level (MCL) of 0.2 μg/L, are found to be highly effective in mitigating ecological risks and protecting public health. This comprehensive analysis highlights the promising role of advanced microbial bioremediation techniques in addressing PAH contamination across diverse ecosystems, including soils, sediments, and aquatic environments.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.