Amit K. Praharaj , Srikanth Bontha , Vamsi K. Balla , Sunil K. Chakrapani , P.S. Suvin
{"title":"用于航空航天应用的激光定向能沉积铬镍铁合金 625 的高温摩擦学性能研究","authors":"Amit K. Praharaj , Srikanth Bontha , Vamsi K. Balla , Sunil K. Chakrapani , P.S. Suvin","doi":"10.1016/j.triboint.2024.110388","DOIUrl":null,"url":null,"abstract":"<div><div>Laser directed energy deposition (LDED) is an emerging technique for fabricating superalloy based aero engine components. Hence, the current work investigates the tribological performance of LDED processed IN625 at room temperature (RT) and high temperature (HT) conditions of 850 °C to replicate the operating environment of aero engine components. The comparison with conventionally processed (CP) sample confirmed that as-deposited (AD) sample showed similar friction behavior to the CP sample but slightly improved wear performance. The COF and wear rate of AD sample reduced significantly at HT compared to RT due to the evolution of stable oxide layer. NiO, Fe<sub>2</sub>O<sub>3</sub>, and Cr<sub>2</sub>O<sub>3</sub> were the major phases in oxide layer. The work indicates suitability of LDED to fabricate wear resistant surfaces.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110388"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on high-temperature tribological performance of laser directed energy deposited Inconel 625 for aerospace applications\",\"authors\":\"Amit K. Praharaj , Srikanth Bontha , Vamsi K. Balla , Sunil K. Chakrapani , P.S. Suvin\",\"doi\":\"10.1016/j.triboint.2024.110388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser directed energy deposition (LDED) is an emerging technique for fabricating superalloy based aero engine components. Hence, the current work investigates the tribological performance of LDED processed IN625 at room temperature (RT) and high temperature (HT) conditions of 850 °C to replicate the operating environment of aero engine components. The comparison with conventionally processed (CP) sample confirmed that as-deposited (AD) sample showed similar friction behavior to the CP sample but slightly improved wear performance. The COF and wear rate of AD sample reduced significantly at HT compared to RT due to the evolution of stable oxide layer. NiO, Fe<sub>2</sub>O<sub>3</sub>, and Cr<sub>2</sub>O<sub>3</sub> were the major phases in oxide layer. The work indicates suitability of LDED to fabricate wear resistant surfaces.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"202 \",\"pages\":\"Article 110388\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X2401140X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X2401140X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation on high-temperature tribological performance of laser directed energy deposited Inconel 625 for aerospace applications
Laser directed energy deposition (LDED) is an emerging technique for fabricating superalloy based aero engine components. Hence, the current work investigates the tribological performance of LDED processed IN625 at room temperature (RT) and high temperature (HT) conditions of 850 °C to replicate the operating environment of aero engine components. The comparison with conventionally processed (CP) sample confirmed that as-deposited (AD) sample showed similar friction behavior to the CP sample but slightly improved wear performance. The COF and wear rate of AD sample reduced significantly at HT compared to RT due to the evolution of stable oxide layer. NiO, Fe2O3, and Cr2O3 were the major phases in oxide layer. The work indicates suitability of LDED to fabricate wear resistant surfaces.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.