{"title":"有限域上长度为 kslmpn 的重复根常环码","authors":"Qi Zhang , Weiqiong Wang , Shuyu Luo , Yue Li","doi":"10.1016/j.ffa.2024.102542","DOIUrl":null,"url":null,"abstract":"<div><div>For different odd primes <em>k</em>, <em>l</em>, <em>p</em>, and positive integers <em>s</em>, <em>m</em>, <em>n</em>, the polynomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msup><mo>−</mo><mi>λ</mi></math></span> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>[</mo><mi>x</mi><mo>]</mo></mrow></math></span> is explicitly factorized, where <em>p</em> is the characteristic of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, <span><math><mi>λ</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. All repeated-root constacyclic codes and their dual codes of length <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are characterized. In addition, the characterization and enumeration of all linear complementary dual (LCD) cyclic and negacyclic codes of length <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are obtained.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102542"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repeated-root constacyclic codes of length kslmpn over finite fields\",\"authors\":\"Qi Zhang , Weiqiong Wang , Shuyu Luo , Yue Li\",\"doi\":\"10.1016/j.ffa.2024.102542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For different odd primes <em>k</em>, <em>l</em>, <em>p</em>, and positive integers <em>s</em>, <em>m</em>, <em>n</em>, the polynomial <span><math><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msup><mo>−</mo><mi>λ</mi></math></span> in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>[</mo><mi>x</mi><mo>]</mo></mrow></math></span> is explicitly factorized, where <em>p</em> is the characteristic of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, <span><math><mi>λ</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. All repeated-root constacyclic codes and their dual codes of length <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are characterized. In addition, the characterization and enumeration of all linear complementary dual (LCD) cyclic and negacyclic codes of length <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>s</mi></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> are obtained.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"101 \",\"pages\":\"Article 102542\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001813\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001813","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Repeated-root constacyclic codes of length kslmpn over finite fields
For different odd primes k, l, p, and positive integers s, m, n, the polynomial in is explicitly factorized, where p is the characteristic of , . All repeated-root constacyclic codes and their dual codes of length over are characterized. In addition, the characterization and enumeration of all linear complementary dual (LCD) cyclic and negacyclic codes of length over are obtained.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.