有限域上阿贝尔变种对应度量的完整描述

IF 1.2 3区 数学 Q1 MATHEMATICS
Nikolai S. Nadirashvili , Michael A. Tsfasman
{"title":"有限域上阿贝尔变种对应度量的完整描述","authors":"Nikolai S. Nadirashvili ,&nbsp;Michael A. Tsfasman","doi":"10.1016/j.ffa.2024.102543","DOIUrl":null,"url":null,"abstract":"<div><div>We study probability measures corresponding to families of abelian varieties over a finite field. These measures play an important role in the Tsfasman–Vlăduţ theory of asymptotic zeta-functions defining completely the limit zeta-function of the family. J.-P. Serre, using results of R.M. Robinson on conjugate algebraic integers, described the possible set of measures than can correspond to families of abelian varieties over a finite field. The problem whether all such measures actually occur was left open. Moreover, Serre supposed that not all such measures correspond to abelian varieties (for example, the Lebesgue measure on a segment). Here we settle Serre's problem proving that Serre conditions are sufficient, and thus describe completely the set of measures corresponding to abelian varieties.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102543"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete description of measures corresponding to Abelian varieties over finite fields\",\"authors\":\"Nikolai S. Nadirashvili ,&nbsp;Michael A. Tsfasman\",\"doi\":\"10.1016/j.ffa.2024.102543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study probability measures corresponding to families of abelian varieties over a finite field. These measures play an important role in the Tsfasman–Vlăduţ theory of asymptotic zeta-functions defining completely the limit zeta-function of the family. J.-P. Serre, using results of R.M. Robinson on conjugate algebraic integers, described the possible set of measures than can correspond to families of abelian varieties over a finite field. The problem whether all such measures actually occur was left open. Moreover, Serre supposed that not all such measures correspond to abelian varieties (for example, the Lebesgue measure on a segment). Here we settle Serre's problem proving that Serre conditions are sufficient, and thus describe completely the set of measures corresponding to abelian varieties.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"101 \",\"pages\":\"Article 102543\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001825\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001825","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究与有限域上的无性变体族相对应的概率度量。这些度量在完全定义族的极限zeta函数的渐近zeta函数的Tsfasman-Vlăduţ理论中起着重要作用。J.-P.塞雷(J.-P. Serre)利用罗宾逊(R.M. Robinson)关于共轭代数整数的结果,描述了与有限域上无性方程族相对应的可能度量集合。至于是否所有这些度量都会出现,这个问题还没有解决。此外,塞尔认为并非所有这些度量都对应于无比方体(例如,线段上的勒贝格度量)。在这里,我们解决了塞雷的问题,证明塞雷条件是充分的,从而完整地描述了对应于无比方体的度量集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete description of measures corresponding to Abelian varieties over finite fields
We study probability measures corresponding to families of abelian varieties over a finite field. These measures play an important role in the Tsfasman–Vlăduţ theory of asymptotic zeta-functions defining completely the limit zeta-function of the family. J.-P. Serre, using results of R.M. Robinson on conjugate algebraic integers, described the possible set of measures than can correspond to families of abelian varieties over a finite field. The problem whether all such measures actually occur was left open. Moreover, Serre supposed that not all such measures correspond to abelian varieties (for example, the Lebesgue measure on a segment). Here we settle Serre's problem proving that Serre conditions are sufficient, and thus describe completely the set of measures corresponding to abelian varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信