{"title":"具有纳米粒子形状效应的汇流和发散通道中磁流体Al2O3-SiO2-TiO2/水三元混合纳米流体的热性能分析","authors":"C.M. Mohana , B. Rushi Kumar , Sunitha Nagarathnam , I.S. Shivakumara","doi":"10.1016/j.csite.2024.105429","DOIUrl":null,"url":null,"abstract":"<div><div>Improving heat transfer in thermal systems is critical to achieving better results in a variety of systems. The study aims to investigate the laminar flow dynamics of Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-SiO<sub>2</sub>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/water hybrid nanofluids, emphasizing how the channel geometry affects the velocity, temperature distribution, and heat transfer efficiency. This understanding is crucial for optimizing industrial processes, such as cooling systems and heat exchangers. Effects of various nanoparticle shapes, joule heating, viscous dissipation, thermal radiation, and heat source/sink on the system’s behavior are evaluated. Governing partial differential equations are transformed into ordinary differential equations using similarity variables and are solved semi-analytically via the homotopy analysis method. As the Hartmann number increases from 1 to 7, the heat transfer rate rises from 0.02% to 0.9%. When the radiation parameter and Eckert number are varied from 0.05 to 0.2, the heat transfer rate increases significantly, from 1.2% to 4.86% and 3.43% to 13.73%, respectively. Heat transfer rate increased by 16.28% with heat source (<span><math><mrow><mi>Q</mi><mo>=</mo><mn>2</mn></mrow></math></span>) and decreased by -16.12% with heat sink (<span><math><mrow><mi>Q</mi><mo>=</mo><mo>−</mo><mn>2</mn></mrow></math></span>). Platelet-shaped nanoparticles demonstrate lower skin friction in divergent channels, whereas spherical nanoparticles exhibit higher skin friction; this trend reverses in convergent channels. Suspensions of nanoparticles with a 5% volume fraction achieve heat transfer rates of 1.88%, 4.07%, 10.54%, 19.20%, and 8.74% for spheres, bricks, cylinders, platelets, and blades, respectively. The study reveals that Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, and Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-SiO<sub>2</sub>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O nanofluids have the best heat transfer rates for mono nanofluid, hybrid nanofluid, and ternary hybrid nanofluid by 15.24%, 19.92%, and 19.20%, respectively. Finally, multiple linear regression is employed to analyze the impact of relevant parameters on heat transfer rate and skin friction.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105429"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance analysis of magnetohydrodynamic Al2O3-SiO2-TiO2/water ternary hybrid nanofluid in converging and diverging channels with nanoparticle shape effects\",\"authors\":\"C.M. Mohana , B. Rushi Kumar , Sunitha Nagarathnam , I.S. Shivakumara\",\"doi\":\"10.1016/j.csite.2024.105429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving heat transfer in thermal systems is critical to achieving better results in a variety of systems. The study aims to investigate the laminar flow dynamics of Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-SiO<sub>2</sub>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/water hybrid nanofluids, emphasizing how the channel geometry affects the velocity, temperature distribution, and heat transfer efficiency. This understanding is crucial for optimizing industrial processes, such as cooling systems and heat exchangers. Effects of various nanoparticle shapes, joule heating, viscous dissipation, thermal radiation, and heat source/sink on the system’s behavior are evaluated. Governing partial differential equations are transformed into ordinary differential equations using similarity variables and are solved semi-analytically via the homotopy analysis method. As the Hartmann number increases from 1 to 7, the heat transfer rate rises from 0.02% to 0.9%. When the radiation parameter and Eckert number are varied from 0.05 to 0.2, the heat transfer rate increases significantly, from 1.2% to 4.86% and 3.43% to 13.73%, respectively. Heat transfer rate increased by 16.28% with heat source (<span><math><mrow><mi>Q</mi><mo>=</mo><mn>2</mn></mrow></math></span>) and decreased by -16.12% with heat sink (<span><math><mrow><mi>Q</mi><mo>=</mo><mo>−</mo><mn>2</mn></mrow></math></span>). Platelet-shaped nanoparticles demonstrate lower skin friction in divergent channels, whereas spherical nanoparticles exhibit higher skin friction; this trend reverses in convergent channels. Suspensions of nanoparticles with a 5% volume fraction achieve heat transfer rates of 1.88%, 4.07%, 10.54%, 19.20%, and 8.74% for spheres, bricks, cylinders, platelets, and blades, respectively. The study reveals that Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, and Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-SiO<sub>2</sub>-TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O nanofluids have the best heat transfer rates for mono nanofluid, hybrid nanofluid, and ternary hybrid nanofluid by 15.24%, 19.92%, and 19.20%, respectively. Finally, multiple linear regression is employed to analyze the impact of relevant parameters on heat transfer rate and skin friction.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"64 \",\"pages\":\"Article 105429\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24014606\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24014606","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Thermal performance analysis of magnetohydrodynamic Al2O3-SiO2-TiO2/water ternary hybrid nanofluid in converging and diverging channels with nanoparticle shape effects
Improving heat transfer in thermal systems is critical to achieving better results in a variety of systems. The study aims to investigate the laminar flow dynamics of AlO-SiO2-TiO/water hybrid nanofluids, emphasizing how the channel geometry affects the velocity, temperature distribution, and heat transfer efficiency. This understanding is crucial for optimizing industrial processes, such as cooling systems and heat exchangers. Effects of various nanoparticle shapes, joule heating, viscous dissipation, thermal radiation, and heat source/sink on the system’s behavior are evaluated. Governing partial differential equations are transformed into ordinary differential equations using similarity variables and are solved semi-analytically via the homotopy analysis method. As the Hartmann number increases from 1 to 7, the heat transfer rate rises from 0.02% to 0.9%. When the radiation parameter and Eckert number are varied from 0.05 to 0.2, the heat transfer rate increases significantly, from 1.2% to 4.86% and 3.43% to 13.73%, respectively. Heat transfer rate increased by 16.28% with heat source () and decreased by -16.12% with heat sink (). Platelet-shaped nanoparticles demonstrate lower skin friction in divergent channels, whereas spherical nanoparticles exhibit higher skin friction; this trend reverses in convergent channels. Suspensions of nanoparticles with a 5% volume fraction achieve heat transfer rates of 1.88%, 4.07%, 10.54%, 19.20%, and 8.74% for spheres, bricks, cylinders, platelets, and blades, respectively. The study reveals that AlO/HO, AlO-TiO/HO, and AlO-SiO2-TiO/HO nanofluids have the best heat transfer rates for mono nanofluid, hybrid nanofluid, and ternary hybrid nanofluid by 15.24%, 19.92%, and 19.20%, respectively. Finally, multiple linear regression is employed to analyze the impact of relevant parameters on heat transfer rate and skin friction.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.