{"title":"舒伯特多项式的主特殊化、多层排列和渐近论","authors":"Ningxin Zhang","doi":"10.1016/j.aam.2024.102806","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>v</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the largest principal specialization of Schubert polynomials for layered permutations <span><math><mi>v</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>w</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo></mo><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Morales, Pak and Panova proved that there is a limit<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><mi>log</mi><mo></mo><mi>v</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> and gave a precise description of layered permutations reaching the maximum. In this paper, we extend Morales Pak and Panova's results to generalized principal specialization <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>)</mo></math></span> for multi-layered permutations when <em>q</em> equals a root of unity.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102806"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal specializations of Schubert polynomials, multi-layered permutations and asymptotics\",\"authors\":\"Ningxin Zhang\",\"doi\":\"10.1016/j.aam.2024.102806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>v</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the largest principal specialization of Schubert polynomials for layered permutations <span><math><mi>v</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>max</mi></mrow><mrow><mi>w</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo></mo><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Morales, Pak and Panova proved that there is a limit<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><mi>log</mi><mo></mo><mi>v</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></math></span></span></span> and gave a precise description of layered permutations reaching the maximum. In this paper, we extend Morales Pak and Panova's results to generalized principal specialization <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>w</mi></mrow></msub><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mo>…</mo><mo>)</mo></math></span> for multi-layered permutations when <em>q</em> equals a root of unity.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"163 \",\"pages\":\"Article 102806\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824001386\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824001386","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Principal specializations of Schubert polynomials, multi-layered permutations and asymptotics
Let be the largest principal specialization of Schubert polynomials for layered permutations . Morales, Pak and Panova proved that there is a limit and gave a precise description of layered permutations reaching the maximum. In this paper, we extend Morales Pak and Panova's results to generalized principal specialization for multi-layered permutations when q equals a root of unity.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.