{"title":"标量曲率刚度和高映射度","authors":"Thomas Tony","doi":"10.1016/j.jfa.2024.110744","DOIUrl":null,"url":null,"abstract":"<div><div>A closed connected oriented Riemannian manifold <em>N</em> with non-vanishing Euler characteristic, non-negative curvature operator and <span><math><mn>0</mn><mo><</mo><mn>2</mn><msub><mrow><mi>Ric</mi></mrow><mrow><mi>N</mi></mrow></msub><mo><</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is area-rigid in the sense that any area non-increasing spin map <span><math><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span> with non-vanishing <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-degree and <span><math><msub><mrow><mi>scal</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>≥</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>∘</mo><mi>f</mi></math></span> is a Riemannian submersion with <span><math><msub><mrow><mi>scal</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>=</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>∘</mo><mi>f</mi></math></span>. This is due to Goette and Semmelmann and generalizes a result by Llarull. In this article, we show area-rigidity for not necessarily orientable manifolds with respect to a larger class of maps <span><math><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span> by replacing the topological condition on the <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-degree by a less restrictive condition involving the so-called higher mapping degree. This includes fiber bundles over even dimensional spheres with enlargeable fibers, e.g. <span><math><msub><mrow><mi>pr</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>→</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>. We develop a technique to extract from a non-vanishing higher index a geometrically useful family of almost <figure><img></figure>-harmonic sections. This also leads to a new proof of the fact that any closed connected spin manifold with non-negative scalar curvature and non-trivial Rosenberg index is Ricci flat.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110744"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalar curvature rigidity and the higher mapping degree\",\"authors\":\"Thomas Tony\",\"doi\":\"10.1016/j.jfa.2024.110744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A closed connected oriented Riemannian manifold <em>N</em> with non-vanishing Euler characteristic, non-negative curvature operator and <span><math><mn>0</mn><mo><</mo><mn>2</mn><msub><mrow><mi>Ric</mi></mrow><mrow><mi>N</mi></mrow></msub><mo><</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> is area-rigid in the sense that any area non-increasing spin map <span><math><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span> with non-vanishing <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-degree and <span><math><msub><mrow><mi>scal</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>≥</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>∘</mo><mi>f</mi></math></span> is a Riemannian submersion with <span><math><msub><mrow><mi>scal</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>=</mo><msub><mrow><mi>scal</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>∘</mo><mi>f</mi></math></span>. This is due to Goette and Semmelmann and generalizes a result by Llarull. In this article, we show area-rigidity for not necessarily orientable manifolds with respect to a larger class of maps <span><math><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>N</mi></math></span> by replacing the topological condition on the <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>-degree by a less restrictive condition involving the so-called higher mapping degree. This includes fiber bundles over even dimensional spheres with enlargeable fibers, e.g. <span><math><msub><mrow><mi>pr</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>→</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>. We develop a technique to extract from a non-vanishing higher index a geometrically useful family of almost <figure><img></figure>-harmonic sections. This also leads to a new proof of the fact that any closed connected spin manifold with non-negative scalar curvature and non-trivial Rosenberg index is Ricci flat.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 3\",\"pages\":\"Article 110744\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624004324\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004324","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Scalar curvature rigidity and the higher mapping degree
A closed connected oriented Riemannian manifold N with non-vanishing Euler characteristic, non-negative curvature operator and is area-rigid in the sense that any area non-increasing spin map with non-vanishing -degree and is a Riemannian submersion with . This is due to Goette and Semmelmann and generalizes a result by Llarull. In this article, we show area-rigidity for not necessarily orientable manifolds with respect to a larger class of maps by replacing the topological condition on the -degree by a less restrictive condition involving the so-called higher mapping degree. This includes fiber bundles over even dimensional spheres with enlargeable fibers, e.g. . We develop a technique to extract from a non-vanishing higher index a geometrically useful family of almost -harmonic sections. This also leads to a new proof of the fact that any closed connected spin manifold with non-negative scalar curvature and non-trivial Rosenberg index is Ricci flat.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis