天然粘土和砂土在不同应变振幅下的循环降解相关性

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
J. Jalili, M.K. Jafari
{"title":"天然粘土和砂土在不同应变振幅下的循环降解相关性","authors":"J. Jalili,&nbsp;M.K. Jafari","doi":"10.1016/j.soildyn.2024.109084","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclic degradation of soil significantly affects its behavior in seismic analyses, especially at relatively large strain levels. Beyond the threshold shear strain for degradation, soil properties, including its stiffness and damping, may change dramatically with each loading cycle. The present study aims to extend the investigation by probing the effect of cyclic degradation in greater detail, interpreting results from cyclic tests conducted at an advanced laboratory. In this regard, the results of 77 cyclic tests on natural sandy and clayey soils were analyzed. It was observed that the threshold strain for degradation is 1–2 × 10<sup>−4</sup> for clayey soils and 3 to 4 × 10<sup>−4</sup> for sandy soils. Furthermore, a correlation is proposed between degradation parameters and strain, which is useful for predicting the shear modulus for a desired loop number in cases where only the shear modulus of the 1st loop is available. To ensure the accuracy of this correlation, two additional tests were conducted in the laboratory. The predictions showed satisfactory agreement with the measurements. It was observed that after 15 loading cycles, the shear modulus of the soil decreased to 30–40 % of its initial value at the first cycle. This degraded modulus could be estimated using the correlation proposed in this study, with a 10 % margin of error. This validation supports the applicability of the proposed correlation.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"188 ","pages":"Article 109084"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A correlation for cyclic degradation of natural clayey and sandy soils at different strain amplitudes\",\"authors\":\"J. Jalili,&nbsp;M.K. Jafari\",\"doi\":\"10.1016/j.soildyn.2024.109084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cyclic degradation of soil significantly affects its behavior in seismic analyses, especially at relatively large strain levels. Beyond the threshold shear strain for degradation, soil properties, including its stiffness and damping, may change dramatically with each loading cycle. The present study aims to extend the investigation by probing the effect of cyclic degradation in greater detail, interpreting results from cyclic tests conducted at an advanced laboratory. In this regard, the results of 77 cyclic tests on natural sandy and clayey soils were analyzed. It was observed that the threshold strain for degradation is 1–2 × 10<sup>−4</sup> for clayey soils and 3 to 4 × 10<sup>−4</sup> for sandy soils. Furthermore, a correlation is proposed between degradation parameters and strain, which is useful for predicting the shear modulus for a desired loop number in cases where only the shear modulus of the 1st loop is available. To ensure the accuracy of this correlation, two additional tests were conducted in the laboratory. The predictions showed satisfactory agreement with the measurements. It was observed that after 15 loading cycles, the shear modulus of the soil decreased to 30–40 % of its initial value at the first cycle. This degraded modulus could be estimated using the correlation proposed in this study, with a 10 % margin of error. This validation supports the applicability of the proposed correlation.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"188 \",\"pages\":\"Article 109084\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124006365\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124006365","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

在地震分析中,土壤的循环降解会对其行为产生重大影响,尤其是在相对较大的应变水平下。超过降解的剪切应变阈值后,土壤特性(包括其刚度和阻尼)可能会随着每个加载周期发生巨大变化。本研究旨在扩大调查范围,更详细地探究循环降解的影响,解释在先进实验室进行的循环测试结果。为此,对天然砂土和粘性土的 77 次循环测试结果进行了分析。结果表明,粘土降解的临界应变为 1-2 × 10-4,砂土为 3 至 4 × 10-4。此外,还提出了降解参数与应变之间的相关性,这对于在仅有第一环剪切模量的情况下预测所需环数的剪切模量非常有用。为了确保这种相关性的准确性,在实验室中又进行了两次测试。预测结果与测量结果的一致性令人满意。据观察,经过 15 个加载循环后,土壤的剪切模量下降到第一个循环初始值的 30-40%。使用本研究提出的相关方法可以估算出这一降低的模量,误差范围为 10%。这一验证支持了所建议的相关性的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A correlation for cyclic degradation of natural clayey and sandy soils at different strain amplitudes
Cyclic degradation of soil significantly affects its behavior in seismic analyses, especially at relatively large strain levels. Beyond the threshold shear strain for degradation, soil properties, including its stiffness and damping, may change dramatically with each loading cycle. The present study aims to extend the investigation by probing the effect of cyclic degradation in greater detail, interpreting results from cyclic tests conducted at an advanced laboratory. In this regard, the results of 77 cyclic tests on natural sandy and clayey soils were analyzed. It was observed that the threshold strain for degradation is 1–2 × 10−4 for clayey soils and 3 to 4 × 10−4 for sandy soils. Furthermore, a correlation is proposed between degradation parameters and strain, which is useful for predicting the shear modulus for a desired loop number in cases where only the shear modulus of the 1st loop is available. To ensure the accuracy of this correlation, two additional tests were conducted in the laboratory. The predictions showed satisfactory agreement with the measurements. It was observed that after 15 loading cycles, the shear modulus of the soil decreased to 30–40 % of its initial value at the first cycle. This degraded modulus could be estimated using the correlation proposed in this study, with a 10 % margin of error. This validation supports the applicability of the proposed correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信