为每个无限广度半网格构建非AMNM加权卷积代数

IF 1.7 2区 数学 Q1 MATHEMATICS
Yemon Choi , Mahya Ghandehari , Hung Le Pham
{"title":"为每个无限广度半网格构建非AMNM加权卷积代数","authors":"Yemon Choi ,&nbsp;Mahya Ghandehari ,&nbsp;Hung Le Pham","doi":"10.1016/j.jfa.2024.110735","DOIUrl":null,"url":null,"abstract":"<div><div>The AMNM property for commutative Banach algebras is a form of Ulam stability for multiplicative linear functionals. We show that on any semilattice of infinite breadth, one may construct a weight for which the resulting weighted convolution algebra fails to have the AMNM property. Our work is the culmination of a trilogy started in <span><span>[4]</span></span> and continued in <span><span>[5]</span></span>. In particular, we obtain a refinement of the main result of <span><span>[5]</span></span>, by establishing a dichotomy for union-closed set systems that has a Ramsey-theoretic flavour.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110735"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing non-AMNM weighted convolution algebras for every semilattice of infinite breadth\",\"authors\":\"Yemon Choi ,&nbsp;Mahya Ghandehari ,&nbsp;Hung Le Pham\",\"doi\":\"10.1016/j.jfa.2024.110735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The AMNM property for commutative Banach algebras is a form of Ulam stability for multiplicative linear functionals. We show that on any semilattice of infinite breadth, one may construct a weight for which the resulting weighted convolution algebra fails to have the AMNM property. Our work is the culmination of a trilogy started in <span><span>[4]</span></span> and continued in <span><span>[5]</span></span>. In particular, we obtain a refinement of the main result of <span><span>[5]</span></span>, by establishing a dichotomy for union-closed set systems that has a Ramsey-theoretic flavour.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 3\",\"pages\":\"Article 110735\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624004233\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004233","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

巴拿赫交换代数的 AMNM 特性是乘法线性函数的乌兰稳定性的一种形式。我们的研究表明,在任何无限宽的半网格上,我们都可以构造一个权值,由此得到的加权卷积代数不具有 AMNM 性质。我们的研究是始于 [4] 并延续于 [5] 的三部曲的顶点。特别是,我们通过建立具有拉姆齐理论色彩的联合封闭集系统二分法,得到了 [5] 主要结果的完善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing non-AMNM weighted convolution algebras for every semilattice of infinite breadth
The AMNM property for commutative Banach algebras is a form of Ulam stability for multiplicative linear functionals. We show that on any semilattice of infinite breadth, one may construct a weight for which the resulting weighted convolution algebra fails to have the AMNM property. Our work is the culmination of a trilogy started in [4] and continued in [5]. In particular, we obtain a refinement of the main result of [5], by establishing a dichotomy for union-closed set systems that has a Ramsey-theoretic flavour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信