Dario Poloni , Maurizio Morgese , Chengwei Wang , Todd Taylor , Marco Giglio , Farhad Ansari , Claudio Sbarufatti
{"title":"多跨桥梁挠度的无参照分布式监测","authors":"Dario Poloni , Maurizio Morgese , Chengwei Wang , Todd Taylor , Marco Giglio , Farhad Ansari , Claudio Sbarufatti","doi":"10.1016/j.engstruct.2024.119277","DOIUrl":null,"url":null,"abstract":"<div><div>The research presented herein pertains to developing a reference-free technique for monitoring bridge deflections under operational conditions. The method is based on monitoring the distributed strains along the length of bridges and employing the Inverse Finite Element Method (iFEM) to compute the deflection for the entire length of bridges. Distributed sensing of strains was achieved by a Brillouin Optical Time Domain Analysis system (BOTDA). The dynamic strains were then used in the iFEM algorithm to calculate the deflections of the structure. This approach computes structural displacements by a variational principle with minimal computational cost. Because of its independence from loads and material properties, the proposed methodology monitors the dynamic deflections during bridge routine traffic operations, and it is potentially viable for real-time monitoring. The approach is validated through two comprehensive case studies, including a laboratory experiment and a field application on a multi-span concrete bridge.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"323 ","pages":"Article 119277"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reference-free distributed monitoring of deflections in multi-span bridges\",\"authors\":\"Dario Poloni , Maurizio Morgese , Chengwei Wang , Todd Taylor , Marco Giglio , Farhad Ansari , Claudio Sbarufatti\",\"doi\":\"10.1016/j.engstruct.2024.119277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The research presented herein pertains to developing a reference-free technique for monitoring bridge deflections under operational conditions. The method is based on monitoring the distributed strains along the length of bridges and employing the Inverse Finite Element Method (iFEM) to compute the deflection for the entire length of bridges. Distributed sensing of strains was achieved by a Brillouin Optical Time Domain Analysis system (BOTDA). The dynamic strains were then used in the iFEM algorithm to calculate the deflections of the structure. This approach computes structural displacements by a variational principle with minimal computational cost. Because of its independence from loads and material properties, the proposed methodology monitors the dynamic deflections during bridge routine traffic operations, and it is potentially viable for real-time monitoring. The approach is validated through two comprehensive case studies, including a laboratory experiment and a field application on a multi-span concrete bridge.</div></div>\",\"PeriodicalId\":11763,\"journal\":{\"name\":\"Engineering Structures\",\"volume\":\"323 \",\"pages\":\"Article 119277\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014102962401839X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014102962401839X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Reference-free distributed monitoring of deflections in multi-span bridges
The research presented herein pertains to developing a reference-free technique for monitoring bridge deflections under operational conditions. The method is based on monitoring the distributed strains along the length of bridges and employing the Inverse Finite Element Method (iFEM) to compute the deflection for the entire length of bridges. Distributed sensing of strains was achieved by a Brillouin Optical Time Domain Analysis system (BOTDA). The dynamic strains were then used in the iFEM algorithm to calculate the deflections of the structure. This approach computes structural displacements by a variational principle with minimal computational cost. Because of its independence from loads and material properties, the proposed methodology monitors the dynamic deflections during bridge routine traffic operations, and it is potentially viable for real-time monitoring. The approach is validated through two comprehensive case studies, including a laboratory experiment and a field application on a multi-span concrete bridge.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.