{"title":"肿瘤血管生成过程中 N-D 趋化-对流模型的全局存在性和有界性","authors":"Fengxiang Zhao, Jiashan Zheng, Kaiqiang Li","doi":"10.1016/j.nonrwa.2024.104257","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the following parabolic–parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>a</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>on a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>1</mn></mrow></math></span>) with smooth boundary <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, where <span><math><mi>μ</mi></math></span>, <span><math><mi>a</mi></math></span>, <span><math><mi>α</mi></math></span> are positive constants and <span><math><mrow><mi>ξ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. If one of the following cases holds:</div><div>(i) <span><math><mrow><mi>N</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>></mo><mfrac><mrow><mn>4</mn><mi>N</mi><mo>−</mo><mn>4</mn><mo>+</mo><mi>N</mi><msqrt><mrow><mn>2</mn><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mi>N</mi><mo>+</mo><mn>8</mn></mrow></msqrt></mrow><mrow><mn>2</mn><mi>N</mi></mrow></mfrac></mrow></math></span>;</div><div>(ii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>></mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math></span>, the index <span><math><mi>μ</mi></math></span> should be suitably big;</div><div>(iii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>.</div><div>Without any restriction on the index <span><math><mi>ξ</mi></math></span>, for any given suitably regular initial data, the corresponding Neumann initial–boundary problem admits a unique global and bounded classical solution.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104257"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and boundedness to an N-D chemotaxis-convection model during tumor angiogenesis\",\"authors\":\"Fengxiang Zhao, Jiashan Zheng, Kaiqiang Li\",\"doi\":\"10.1016/j.nonrwa.2024.104257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the following parabolic–parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>a</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>on a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>1</mn></mrow></math></span>) with smooth boundary <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, where <span><math><mi>μ</mi></math></span>, <span><math><mi>a</mi></math></span>, <span><math><mi>α</mi></math></span> are positive constants and <span><math><mrow><mi>ξ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. If one of the following cases holds:</div><div>(i) <span><math><mrow><mi>N</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>></mo><mfrac><mrow><mn>4</mn><mi>N</mi><mo>−</mo><mn>4</mn><mo>+</mo><mi>N</mi><msqrt><mrow><mn>2</mn><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mi>N</mi><mo>+</mo><mn>8</mn></mrow></msqrt></mrow><mrow><mn>2</mn><mi>N</mi></mrow></mfrac></mrow></math></span>;</div><div>(ii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>></mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math></span>, the index <span><math><mi>μ</mi></math></span> should be suitably big;</div><div>(iii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>.</div><div>Without any restriction on the index <span><math><mi>ξ</mi></math></span>, for any given suitably regular initial data, the corresponding Neumann initial–boundary problem admits a unique global and bounded classical solution.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"82 \",\"pages\":\"Article 104257\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001962\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001962","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global existence and boundedness to an N-D chemotaxis-convection model during tumor angiogenesis
In this paper, we consider the following parabolic–parabolic–elliptic system on a bounded domain () with smooth boundary , where , , are positive constants and . If one of the following cases holds:
(i) and ;
(ii) , , for any or , the index should be suitably big;
(iii) , , for any .
Without any restriction on the index , for any given suitably regular initial data, the corresponding Neumann initial–boundary problem admits a unique global and bounded classical solution.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.