肿瘤血管生成过程中 N-D 趋化-对流模型的全局存在性和有界性

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Fengxiang Zhao, Jiashan Zheng, Kaiqiang Li
{"title":"肿瘤血管生成过程中 N-D 趋化-对流模型的全局存在性和有界性","authors":"Fengxiang Zhao,&nbsp;Jiashan Zheng,&nbsp;Kaiqiang Li","doi":"10.1016/j.nonrwa.2024.104257","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the following parabolic–parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>a</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>on a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>1</mn></mrow></math></span>) with smooth boundary <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, where <span><math><mi>μ</mi></math></span>, <span><math><mi>a</mi></math></span>, <span><math><mi>α</mi></math></span> are positive constants and <span><math><mrow><mi>ξ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. If one of the following cases holds:</div><div>(i) <span><math><mrow><mi>N</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>4</mn><mi>N</mi><mo>−</mo><mn>4</mn><mo>+</mo><mi>N</mi><msqrt><mrow><mn>2</mn><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mi>N</mi><mo>+</mo><mn>8</mn></mrow></msqrt></mrow><mrow><mn>2</mn><mi>N</mi></mrow></mfrac></mrow></math></span>;</div><div>(ii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math></span>, the index <span><math><mi>μ</mi></math></span> should be suitably big;</div><div>(iii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>.</div><div>Without any restriction on the index <span><math><mi>ξ</mi></math></span>, for any given suitably regular initial data, the corresponding Neumann initial–boundary problem admits a unique global and bounded classical solution.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104257"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and boundedness to an N-D chemotaxis-convection model during tumor angiogenesis\",\"authors\":\"Fengxiang Zhao,&nbsp;Jiashan Zheng,&nbsp;Kaiqiang Li\",\"doi\":\"10.1016/j.nonrwa.2024.104257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the following parabolic–parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>a</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>on a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>1</mn></mrow></math></span>) with smooth boundary <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, where <span><math><mi>μ</mi></math></span>, <span><math><mi>a</mi></math></span>, <span><math><mi>α</mi></math></span> are positive constants and <span><math><mrow><mi>ξ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. If one of the following cases holds:</div><div>(i) <span><math><mrow><mi>N</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>4</mn><mi>N</mi><mo>−</mo><mn>4</mn><mo>+</mo><mi>N</mi><msqrt><mrow><mn>2</mn><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mi>N</mi><mo>+</mo><mn>8</mn></mrow></msqrt></mrow><mrow><mn>2</mn><mi>N</mi></mrow></mfrac></mrow></math></span>;</div><div>(ii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math></span>, the index <span><math><mi>μ</mi></math></span> should be suitably big;</div><div>(iii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>.</div><div>Without any restriction on the index <span><math><mi>ξ</mi></math></span>, for any given suitably regular initial data, the corresponding Neumann initial–boundary problem admits a unique global and bounded classical solution.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"82 \",\"pages\":\"Article 104257\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001962\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001962","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑以下抛物-抛物-椭圆系统 ut=Δu-∇⋅(u∇v)+ξ∇(u⋅∇w)+au-μuα,x∈Ω,t>;0,vt=Δv+∇⋅(v∇w)-v+u,x∈Ω,t>0,0=Δw-w+u,x∈Ω,t>0在具有光滑边界∂Ω的有界域Ω⊂RN(N≥1)上,其中μ、a、α为正常数和ξ∈R。如果以下情况之一成立:(i) N≥4 且 α>4N-4+N2N2-6N+82N;(ii) N=3, α>2,对于任意 μ>0 或 α=2, 索引 μ 应适当大;(iii) N=2, α≥2, 对于任意 μ>0。在不限制指数ξ的情况下,对于任何给定的适当规则的初始数据,相应的诺伊曼初始-边界问题都有唯一的全局有界经典解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and boundedness to an N-D chemotaxis-convection model during tumor angiogenesis
In this paper, we consider the following parabolic–parabolic–elliptic system ut=Δu(uv)+ξ(uw)+auμuα,xΩ,t>0,vt=Δv+(vw)v+u,xΩ,t>0,0=Δww+u,xΩ,t>0on a bounded domain ΩRN (N1) with smooth boundary Ω, where μ, a, α are positive constants and ξR. If one of the following cases holds:
(i) N4 and α>4N4+N2N26N+82N;
(ii) N=3, α>2, for any μ>0 or α=2, the index μ should be suitably big;
(iii) N=2, α2, for any μ>0.
Without any restriction on the index ξ, for any given suitably regular initial data, the corresponding Neumann initial–boundary problem admits a unique global and bounded classical solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信