平面内两个马库斯-山边片断平稳系统的匹配

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Denis de Carvalho Braga , Fabio Scalco Dias , Jaume Llibre , Luis Fernando Mello
{"title":"平面内两个马库斯-山边片断平稳系统的匹配","authors":"Denis de Carvalho Braga ,&nbsp;Fabio Scalco Dias ,&nbsp;Jaume Llibre ,&nbsp;Luis Fernando Mello","doi":"10.1016/j.nonrwa.2024.104254","DOIUrl":null,"url":null,"abstract":"<div><div>A Markus-Yamabe vector field is a smooth vector field in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> having only one equilibrium point and such that the spectrum of its Jacobian matrix at any point of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is on the left of the imaginary axis in the complex plane. A vector field is globally asymptotically stable if it has a globally asymptotically stable equilibrium point <span><math><mi>p</mi></math></span>: all the orbits tend to <span><math><mi>p</mi></math></span> in forward time. One of the great results of the Qualitative Theory of Differential Equations establishes that a planar Markus-Yamabe vector field is globally asymptotically stable, but a Markus-Yamabe vector field defined in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>3</mn></mrow></math></span>, does not have in general this property. We prove that planar crossing piecewise smooth vector fields defined in two zones formed by two Markus-Yamabe vector fields sharing the same equilibrium point located on the separation straight line are not necessarily globally asymptotically stable.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104254"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The matching of two Markus-Yamabe piecewise smooth systems in the plane\",\"authors\":\"Denis de Carvalho Braga ,&nbsp;Fabio Scalco Dias ,&nbsp;Jaume Llibre ,&nbsp;Luis Fernando Mello\",\"doi\":\"10.1016/j.nonrwa.2024.104254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A Markus-Yamabe vector field is a smooth vector field in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> having only one equilibrium point and such that the spectrum of its Jacobian matrix at any point of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is on the left of the imaginary axis in the complex plane. A vector field is globally asymptotically stable if it has a globally asymptotically stable equilibrium point <span><math><mi>p</mi></math></span>: all the orbits tend to <span><math><mi>p</mi></math></span> in forward time. One of the great results of the Qualitative Theory of Differential Equations establishes that a planar Markus-Yamabe vector field is globally asymptotically stable, but a Markus-Yamabe vector field defined in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>3</mn></mrow></math></span>, does not have in general this property. We prove that planar crossing piecewise smooth vector fields defined in two zones formed by two Markus-Yamabe vector fields sharing the same equilibrium point located on the separation straight line are not necessarily globally asymptotically stable.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"82 \",\"pages\":\"Article 104254\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001937\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001937","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

马库斯-山边矢量场是 Rn 中只有一个平衡点的光滑矢量场,其在 Rn 任意一点的雅各布矩阵谱位于复平面虚轴的左边。如果一个向量场有一个全局渐近稳定的平衡点 p,那么它就是全局渐近稳定的:在向前的时间里,所有轨道都趋向于 p。微分方程定性理论的伟大成果之一确定了平面马库斯-雅马贝向量场是全局渐近稳定的,但定义在 Rn, n⩾3 中的马库斯-雅马贝向量场一般不具有这一性质。我们证明,在两个马库斯-雅马贝向量场形成的两个区域中定义的平面交叉片断光滑向量场,共享位于分离直线上的同一个平衡点,并不一定是全局渐近稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The matching of two Markus-Yamabe piecewise smooth systems in the plane
A Markus-Yamabe vector field is a smooth vector field in Rn having only one equilibrium point and such that the spectrum of its Jacobian matrix at any point of Rn is on the left of the imaginary axis in the complex plane. A vector field is globally asymptotically stable if it has a globally asymptotically stable equilibrium point p: all the orbits tend to p in forward time. One of the great results of the Qualitative Theory of Differential Equations establishes that a planar Markus-Yamabe vector field is globally asymptotically stable, but a Markus-Yamabe vector field defined in Rn, n3, does not have in general this property. We prove that planar crossing piecewise smooth vector fields defined in two zones formed by two Markus-Yamabe vector fields sharing the same equilibrium point located on the separation straight line are not necessarily globally asymptotically stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信