泊松变换和单能复几何

IF 1.7 2区 数学 Q1 MATHEMATICS
Heiko Gimperlein , Bernhard Krötz , Luz Roncal , Sundaram Thangavelu
{"title":"泊松变换和单能复几何","authors":"Heiko Gimperlein ,&nbsp;Bernhard Krötz ,&nbsp;Luz Roncal ,&nbsp;Sundaram Thangavelu","doi":"10.1016/j.jfa.2024.110742","DOIUrl":null,"url":null,"abstract":"<div><div>Our concern is with Riemannian symmetric spaces <span><math><mi>Z</mi><mo>=</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span> of the non-compact type and more precisely with the Poisson transform <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> which maps generalized functions on the boundary ∂<em>Z</em> to <em>λ</em>-eigenfunctions on <em>Z</em>. Special emphasis is given to a maximal unipotent group <span><math><mi>N</mi><mo>&lt;</mo><mi>G</mi></math></span> which naturally acts on both <em>Z</em> and ∂<em>Z</em>. The <em>N</em>-orbits on <em>Z</em> are parametrized by a torus <span><math><mi>A</mi><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>&lt;</mo><mi>G</mi></math></span> (Iwasawa) and letting the level <span><math><mi>a</mi><mo>∈</mo><mi>A</mi></math></span> tend to 0 on a ray we retrieve <em>N</em> via <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>a</mi><mo>→</mo><mn>0</mn></mrow></msub><mo>⁡</mo><mi>N</mi><mi>a</mi></math></span> as an open dense orbit in ∂<em>Z</em> (Bruhat). For positive parameters <em>λ</em> the Poisson transform <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> is defined and injective for functions <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo></math></span> and we give a novel characterization of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo><mo>)</mo></math></span> in terms of complex analysis. For that we view eigenfunctions <span><math><mi>ϕ</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> as families <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub></math></span> of functions on the <em>N</em>-orbits, i.e. <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>ϕ</mi><mo>(</mo><mi>n</mi><mi>a</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. The general theory then tells us that there is a tube domain <span><math><mi>T</mi><mo>=</mo><mi>N</mi><mi>exp</mi><mo>⁡</mo><mo>(</mo><mi>i</mi><mi>Λ</mi><mo>)</mo><mo>⊂</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> such that each <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> extends to a holomorphic function on the scaled tube <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><mi>N</mi><mi>exp</mi><mo>⁡</mo><mo>(</mo><mi>i</mi><mi>Ad</mi><mo>(</mo><mi>a</mi><mo>)</mo><mi>Λ</mi><mo>)</mo></math></span>. We define a class of <em>N</em>-invariant weight functions <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> on the tube <span><math><mi>T</mi></math></span>, rescale them for every <span><math><mi>a</mi><mo>∈</mo><mi>A</mi></math></span> to a weight <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>a</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, and show that each <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> lies in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-weighted Bergman space <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>a</mi></mrow></msub><mo>)</mo><mo>:</mo><mo>=</mo><mi>O</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>a</mi></mrow></msub><mo>)</mo></math></span>. The main result of the article then describes <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo><mo>)</mo></math></span> as those eigenfunctions <em>ϕ</em> for which <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>∈</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>a</mi></mrow></msub><mo>)</mo></math></span> and<span><span><span><math><mo>‖</mo><mi>ϕ</mi><mo>‖</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></munder><mo>⁡</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>Re</mi><mspace></mspace><mi>λ</mi><mo>−</mo><mn>2</mn><mi>ρ</mi></mrow></msup><msub><mrow><mo>‖</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>‖</mo></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>λ</mi></mrow></msub></mrow></msub><mo>&lt;</mo><mo>∞</mo></math></span></span></span> holds.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 3","pages":"Article 110742"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisson transform and unipotent complex geometry\",\"authors\":\"Heiko Gimperlein ,&nbsp;Bernhard Krötz ,&nbsp;Luz Roncal ,&nbsp;Sundaram Thangavelu\",\"doi\":\"10.1016/j.jfa.2024.110742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our concern is with Riemannian symmetric spaces <span><math><mi>Z</mi><mo>=</mo><mi>G</mi><mo>/</mo><mi>K</mi></math></span> of the non-compact type and more precisely with the Poisson transform <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> which maps generalized functions on the boundary ∂<em>Z</em> to <em>λ</em>-eigenfunctions on <em>Z</em>. Special emphasis is given to a maximal unipotent group <span><math><mi>N</mi><mo>&lt;</mo><mi>G</mi></math></span> which naturally acts on both <em>Z</em> and ∂<em>Z</em>. The <em>N</em>-orbits on <em>Z</em> are parametrized by a torus <span><math><mi>A</mi><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>&gt;</mo><mn>0</mn></mrow></msub><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo>&lt;</mo><mi>G</mi></math></span> (Iwasawa) and letting the level <span><math><mi>a</mi><mo>∈</mo><mi>A</mi></math></span> tend to 0 on a ray we retrieve <em>N</em> via <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>a</mi><mo>→</mo><mn>0</mn></mrow></msub><mo>⁡</mo><mi>N</mi><mi>a</mi></math></span> as an open dense orbit in ∂<em>Z</em> (Bruhat). For positive parameters <em>λ</em> the Poisson transform <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> is defined and injective for functions <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo></math></span> and we give a novel characterization of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo><mo>)</mo></math></span> in terms of complex analysis. For that we view eigenfunctions <span><math><mi>ϕ</mi><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> as families <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></msub></math></span> of functions on the <em>N</em>-orbits, i.e. <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>ϕ</mi><mo>(</mo><mi>n</mi><mi>a</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span>. The general theory then tells us that there is a tube domain <span><math><mi>T</mi><mo>=</mo><mi>N</mi><mi>exp</mi><mo>⁡</mo><mo>(</mo><mi>i</mi><mi>Λ</mi><mo>)</mo><mo>⊂</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> such that each <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> extends to a holomorphic function on the scaled tube <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><mi>N</mi><mi>exp</mi><mo>⁡</mo><mo>(</mo><mi>i</mi><mi>Ad</mi><mo>(</mo><mi>a</mi><mo>)</mo><mi>Λ</mi><mo>)</mo></math></span>. We define a class of <em>N</em>-invariant weight functions <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> on the tube <span><math><mi>T</mi></math></span>, rescale them for every <span><math><mi>a</mi><mo>∈</mo><mi>A</mi></math></span> to a weight <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>a</mi></mrow></msub></math></span> on <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, and show that each <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> lies in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-weighted Bergman space <span><math><mi>B</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>a</mi></mrow></msub><mo>)</mo><mo>:</mo><mo>=</mo><mi>O</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>a</mi></mrow></msub><mo>)</mo></math></span>. The main result of the article then describes <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>)</mo><mo>)</mo></math></span> as those eigenfunctions <em>ϕ</em> for which <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>∈</mo><mi>B</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>a</mi></mrow></msub><mo>)</mo></math></span> and<span><span><span><math><mo>‖</mo><mi>ϕ</mi><mo>‖</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>a</mi><mo>∈</mo><mi>A</mi></mrow></munder><mo>⁡</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>Re</mi><mspace></mspace><mi>λ</mi><mo>−</mo><mn>2</mn><mi>ρ</mi></mrow></msup><msub><mrow><mo>‖</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>‖</mo></mrow><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>λ</mi></mrow></msub></mrow></msub><mo>&lt;</mo><mo>∞</mo></math></span></span></span> holds.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 3\",\"pages\":\"Article 110742\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624004300\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004300","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们关注的是非紧凑类型的黎曼对称空间 Z=G/K,更确切地说,是将∂Z 边界上的广义函数映射为 Z 上的λ特征函数的泊松变换 Pλ。我们特别强调了自然作用于 Z 和∂Z 的最大单能群 N<G。Z 上的 N 轨道由一个环 A=(R>0)r<G(岩泽)参数化,让水平 a∈A 在射线上趋向于 0,我们就可以通过 lima→0Na 在 ∂Z 中检索到作为开放密集轨道的 N(布鲁哈特)。对于正参数 λ,函数 f∈L2(N) 的泊松变换 Pλ 是定义的和注入的,我们从复分析的角度给出了 Pλ(L2(N))的新特征。为此,我们将特征函数 ϕ=Pλ(f) 视为 N 轨道上的函数族 (ja)a∈A,即 n∈N 时 ϕa(n)=j(na)。一般理论告诉我们,存在一个管域 T=Nexp(iΛ)⊂NC,使得每个 ϕa 在缩放管 Ta=Nexp(iAd(a)Λ) 上扩展为一个全形函数。我们定义了管子 T 上的一类 N 不变权函数 wλ,对每一个 a∈A 将它们重标度为 Ta 上的权 wλ,a,并证明每个 ja 位于 L2 加权伯格曼空间 B(Ta,wλ,a):=O(Ta)∩L2(Ta,wλ,a)。文章的主要结果将 Pλ(L2(N))描述为ϕa∈B(Ta,wλ,a)和‖ϕ‖:=supa∈AaReλ-2ρ‖ϕa‖Ba,λ<∞成立的特征函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poisson transform and unipotent complex geometry
Our concern is with Riemannian symmetric spaces Z=G/K of the non-compact type and more precisely with the Poisson transform Pλ which maps generalized functions on the boundary ∂Z to λ-eigenfunctions on Z. Special emphasis is given to a maximal unipotent group N<G which naturally acts on both Z and ∂Z. The N-orbits on Z are parametrized by a torus A=(R>0)r<G (Iwasawa) and letting the level aA tend to 0 on a ray we retrieve N via lima0Na as an open dense orbit in ∂Z (Bruhat). For positive parameters λ the Poisson transform Pλ is defined and injective for functions fL2(N) and we give a novel characterization of Pλ(L2(N)) in terms of complex analysis. For that we view eigenfunctions ϕ=Pλ(f) as families (ϕa)aA of functions on the N-orbits, i.e. ϕa(n)=ϕ(na) for nN. The general theory then tells us that there is a tube domain T=Nexp(iΛ)NC such that each ϕa extends to a holomorphic function on the scaled tube Ta=Nexp(iAd(a)Λ). We define a class of N-invariant weight functions wλ on the tube T, rescale them for every aA to a weight wλ,a on Ta, and show that each ϕa lies in the L2-weighted Bergman space B(Ta,wλ,a):=O(Ta)L2(Ta,wλ,a). The main result of the article then describes Pλ(L2(N)) as those eigenfunctions ϕ for which ϕaB(Ta,wλ,a) andϕ:=supaAaReλ2ρϕaBa,λ< holds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信