Defeng Zheng , Qingkang Fang , Deyu Lei , Zehao Wang , Chenglin Yan , Ze Rong
{"title":"考虑海底电缆脆弱性的大规模海底滑坡地质灾害风险:南海北部大陆坡案例研究","authors":"Defeng Zheng , Qingkang Fang , Deyu Lei , Zehao Wang , Chenglin Yan , Ze Rong","doi":"10.1016/j.enggeo.2024.107788","DOIUrl":null,"url":null,"abstract":"<div><div>Submarine landslides pose significant threats to subsea cables distributed on the global seabed. However, regional scale risk assessment of landslide geohazards is rarely reported. This study introduces a methodology for regional-scale geohazard risk prediction of submarine landslides, focusing on the northern continental slopes of the South China Sea. Initially, the study employed the infinite-slope method to calculate safety factors for typical submarine slopes. Addressing uncertainties in geotechnical and seismic parameters, Monte Carlo simulations determine slope failure probabilities. Using kriging interpolation, localized failure probabilities are extrapolated to regional scales, establishing a spatiotemporal distribution method for large-scale geohazard susceptibility. Hazard levels are subsequently determined considering the volumes of potential landslides. The density of subsea cables is used as a vulnerability factor to guide the regional-scale assessment of cable vulnerability. Finally, integrating vulnerability with hazard levels provides a comprehensive assessment of landslide-induced large-scale geohazard risks. The findings highlight elevated geohazard risks in the Taiwan Bank slope segment, moderate risks in the Zhujiang Valley and Shenhu slope segments, with lower risks in other areas.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"343 ","pages":"Article 107788"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale geohazards risk of submarine landslides considering the subsea cables vulnerability: A case study from the northern continental slopes of South China Sea\",\"authors\":\"Defeng Zheng , Qingkang Fang , Deyu Lei , Zehao Wang , Chenglin Yan , Ze Rong\",\"doi\":\"10.1016/j.enggeo.2024.107788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Submarine landslides pose significant threats to subsea cables distributed on the global seabed. However, regional scale risk assessment of landslide geohazards is rarely reported. This study introduces a methodology for regional-scale geohazard risk prediction of submarine landslides, focusing on the northern continental slopes of the South China Sea. Initially, the study employed the infinite-slope method to calculate safety factors for typical submarine slopes. Addressing uncertainties in geotechnical and seismic parameters, Monte Carlo simulations determine slope failure probabilities. Using kriging interpolation, localized failure probabilities are extrapolated to regional scales, establishing a spatiotemporal distribution method for large-scale geohazard susceptibility. Hazard levels are subsequently determined considering the volumes of potential landslides. The density of subsea cables is used as a vulnerability factor to guide the regional-scale assessment of cable vulnerability. Finally, integrating vulnerability with hazard levels provides a comprehensive assessment of landslide-induced large-scale geohazard risks. The findings highlight elevated geohazard risks in the Taiwan Bank slope segment, moderate risks in the Zhujiang Valley and Shenhu slope segments, with lower risks in other areas.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"343 \",\"pages\":\"Article 107788\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795224003880\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003880","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Large-scale geohazards risk of submarine landslides considering the subsea cables vulnerability: A case study from the northern continental slopes of South China Sea
Submarine landslides pose significant threats to subsea cables distributed on the global seabed. However, regional scale risk assessment of landslide geohazards is rarely reported. This study introduces a methodology for regional-scale geohazard risk prediction of submarine landslides, focusing on the northern continental slopes of the South China Sea. Initially, the study employed the infinite-slope method to calculate safety factors for typical submarine slopes. Addressing uncertainties in geotechnical and seismic parameters, Monte Carlo simulations determine slope failure probabilities. Using kriging interpolation, localized failure probabilities are extrapolated to regional scales, establishing a spatiotemporal distribution method for large-scale geohazard susceptibility. Hazard levels are subsequently determined considering the volumes of potential landslides. The density of subsea cables is used as a vulnerability factor to guide the regional-scale assessment of cable vulnerability. Finally, integrating vulnerability with hazard levels provides a comprehensive assessment of landslide-induced large-scale geohazard risks. The findings highlight elevated geohazard risks in the Taiwan Bank slope segment, moderate risks in the Zhujiang Valley and Shenhu slope segments, with lower risks in other areas.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.