{"title":"2-Torus 的梯度样差变形的稳定同位连接性","authors":"A.A. Nozdrinov, E.V. Nozdrinova, O.V. Pochinka","doi":"10.1016/j.geomphys.2024.105352","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most important problems in the theory of dynamical systems (mentioned in the Palis-Pugh list) is the construction of a stable arc between structural stable diffeomorphisms in the space of diffeomorphisms. The paper considers the gradient-like diffeomorphisms of 2-torus that induce an isomorphism of fundamental groups determined by a matrix <span><math><mo>(</mo><mtable><mtr><mtd><mo>−</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>−</mo><mn>1</mn></mtd></mtr></mtable><mo>)</mo></math></span>. We prove that all such diffeomorphisms are stable isotopy connected.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"207 ","pages":"Article 105352"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable isotopy connectivity of gradient-like diffeomorphisms of 2-torus\",\"authors\":\"A.A. Nozdrinov, E.V. Nozdrinova, O.V. Pochinka\",\"doi\":\"10.1016/j.geomphys.2024.105352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the most important problems in the theory of dynamical systems (mentioned in the Palis-Pugh list) is the construction of a stable arc between structural stable diffeomorphisms in the space of diffeomorphisms. The paper considers the gradient-like diffeomorphisms of 2-torus that induce an isomorphism of fundamental groups determined by a matrix <span><math><mo>(</mo><mtable><mtr><mtd><mo>−</mo><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>−</mo><mn>1</mn></mtd></mtr></mtable><mo>)</mo></math></span>. We prove that all such diffeomorphisms are stable isotopy connected.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"207 \",\"pages\":\"Article 105352\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024002535\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002535","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stable isotopy connectivity of gradient-like diffeomorphisms of 2-torus
One of the most important problems in the theory of dynamical systems (mentioned in the Palis-Pugh list) is the construction of a stable arc between structural stable diffeomorphisms in the space of diffeomorphisms. The paper considers the gradient-like diffeomorphisms of 2-torus that induce an isomorphism of fundamental groups determined by a matrix . We prove that all such diffeomorphisms are stable isotopy connected.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity