利用机器学习预测盐水中的总碱度:使用 RapidMiner 的案例研究

Tue Duy Nguyen , Quynh Thi Phuong Le , Man Thi Truc Doan , Ha Manh Bui
{"title":"利用机器学习预测盐水中的总碱度:使用 RapidMiner 的案例研究","authors":"Tue Duy Nguyen ,&nbsp;Quynh Thi Phuong Le ,&nbsp;Man Thi Truc Doan ,&nbsp;Ha Manh Bui","doi":"10.1016/j.scowo.2024.100032","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the use of machine learning models to predict total alkalinity (TA) based on chloride concentration (Cl<sup>-</sup>), pH and temperature. Utilizing RapidMiner's Auto Mode, six machine learning models were applied to a dataset of 111 water samples from the Nhà Bè River. The models' performances were evaluated using Root Mean Square Error (RMSE) and R² metrics, with the Generalized Linear Model (GLM), Support Vector Machine (SVM) and Deep Learning models identified as the top performers. Correlation and coefficient analyses revealed that Cl<sup>-</sup> had the most significant impact on TA prediction, followed by temperature and pH. These findings underscore the effectiveness of machine learning in water quality monitoring, presenting a cost-effective alternative to traditional chemical analysis methods.</div></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"4 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting total alkalinity in saline water using machine learning: A case study with RapidMiner\",\"authors\":\"Tue Duy Nguyen ,&nbsp;Quynh Thi Phuong Le ,&nbsp;Man Thi Truc Doan ,&nbsp;Ha Manh Bui\",\"doi\":\"10.1016/j.scowo.2024.100032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the use of machine learning models to predict total alkalinity (TA) based on chloride concentration (Cl<sup>-</sup>), pH and temperature. Utilizing RapidMiner's Auto Mode, six machine learning models were applied to a dataset of 111 water samples from the Nhà Bè River. The models' performances were evaluated using Root Mean Square Error (RMSE) and R² metrics, with the Generalized Linear Model (GLM), Support Vector Machine (SVM) and Deep Learning models identified as the top performers. Correlation and coefficient analyses revealed that Cl<sup>-</sup> had the most significant impact on TA prediction, followed by temperature and pH. These findings underscore the effectiveness of machine learning in water quality monitoring, presenting a cost-effective alternative to traditional chemical analysis methods.</div></div>\",\"PeriodicalId\":101197,\"journal\":{\"name\":\"Sustainable Chemistry One World\",\"volume\":\"4 \",\"pages\":\"Article 100032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry One World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950357424000325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357424000325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了机器学习模型在氯化物浓度(Cl-)、pH 值和温度基础上预测总碱度(TA)的应用情况。利用 RapidMiner 的自动模式,将 6 个机器学习模型应用于 111 个来自那不勒斯河的水样数据集。使用均方根误差(RMSE)和 R² 指标对模型的性能进行了评估,发现广义线性模型(GLM)、支持向量机(SVM)和深度学习模型的性能最佳。相关性和系数分析表明,Cl- 对 TA 预测的影响最大,其次是温度和 pH 值。这些发现强调了机器学习在水质监测中的有效性,为传统的化学分析方法提供了一种具有成本效益的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting total alkalinity in saline water using machine learning: A case study with RapidMiner
This study investigates the use of machine learning models to predict total alkalinity (TA) based on chloride concentration (Cl-), pH and temperature. Utilizing RapidMiner's Auto Mode, six machine learning models were applied to a dataset of 111 water samples from the Nhà Bè River. The models' performances were evaluated using Root Mean Square Error (RMSE) and R² metrics, with the Generalized Linear Model (GLM), Support Vector Machine (SVM) and Deep Learning models identified as the top performers. Correlation and coefficient analyses revealed that Cl- had the most significant impact on TA prediction, followed by temperature and pH. These findings underscore the effectiveness of machine learning in water quality monitoring, presenting a cost-effective alternative to traditional chemical analysis methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信