用于脉冲管低温冷却器的带磁共振弹簧的无油线性压缩机性能研究

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
Mingsheng Tang , Zhouhang Hu , Liubiao Chen , Yongheng Wu , Jianhua Xiao , Qingqing Yuan , Huiming Zou
{"title":"用于脉冲管低温冷却器的带磁共振弹簧的无油线性压缩机性能研究","authors":"Mingsheng Tang ,&nbsp;Zhouhang Hu ,&nbsp;Liubiao Chen ,&nbsp;Yongheng Wu ,&nbsp;Jianhua Xiao ,&nbsp;Qingqing Yuan ,&nbsp;Huiming Zou","doi":"10.1016/j.cryogenics.2024.103982","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a new type of oil-free linear compressor with a magnetic resonance spring, which uses a magnetic resonance spring to provide restoring force and adopts gas-lubricated bearings to provide support force for the piston. The frequency characteristics of the compressor, including magnetic spring stiffness, gas spring stiffness, and resonance frequency, are studied through experiments and theoretical analysis. The magnetic spring stiffness is 31403.31 N/m of the design compressor. Hooke’s law and Fourier decomposition are employed for the gas spring stiffness measuring the compression pressure gauged. Meanwhile, the gas spring stiffness is also obtained from the amplitude-frequency characteristic of the compressor by the back stepping technique with an electric parameter frequency scan. The experimental results demonstrate that the three measurement methods have good consistency in measuring the gas spring stiffness. The equivalent gas spring stiffness measured using the three methods and theoretical model are 72600.92 N/m, 71275.84 N/m, 71967.15 N/m, and 71929.25 N/m at 3 MPa charged pressure measured respectively. In addition, the refrigeration performance of the pulse tube cryocooler driven by the compressor is tested and the lowest temperature obtained in the cold end is 46.3 K under different charge pressure. Furthermore, an optimal frequency exists that enhances the refrigeration performance of the pulse tube cryocooler, and this optimal frequency remains constant regardless of changes in the charge pressure.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"144 ","pages":"Article 103982"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the performance of oil-free linear compressor with magnetic resonance spring for pulse tube cryocooler\",\"authors\":\"Mingsheng Tang ,&nbsp;Zhouhang Hu ,&nbsp;Liubiao Chen ,&nbsp;Yongheng Wu ,&nbsp;Jianhua Xiao ,&nbsp;Qingqing Yuan ,&nbsp;Huiming Zou\",\"doi\":\"10.1016/j.cryogenics.2024.103982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a new type of oil-free linear compressor with a magnetic resonance spring, which uses a magnetic resonance spring to provide restoring force and adopts gas-lubricated bearings to provide support force for the piston. The frequency characteristics of the compressor, including magnetic spring stiffness, gas spring stiffness, and resonance frequency, are studied through experiments and theoretical analysis. The magnetic spring stiffness is 31403.31 N/m of the design compressor. Hooke’s law and Fourier decomposition are employed for the gas spring stiffness measuring the compression pressure gauged. Meanwhile, the gas spring stiffness is also obtained from the amplitude-frequency characteristic of the compressor by the back stepping technique with an electric parameter frequency scan. The experimental results demonstrate that the three measurement methods have good consistency in measuring the gas spring stiffness. The equivalent gas spring stiffness measured using the three methods and theoretical model are 72600.92 N/m, 71275.84 N/m, 71967.15 N/m, and 71929.25 N/m at 3 MPa charged pressure measured respectively. In addition, the refrigeration performance of the pulse tube cryocooler driven by the compressor is tested and the lowest temperature obtained in the cold end is 46.3 K under different charge pressure. Furthermore, an optimal frequency exists that enhances the refrigeration performance of the pulse tube cryocooler, and this optimal frequency remains constant regardless of changes in the charge pressure.</div></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":\"144 \",\"pages\":\"Article 103982\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524002029\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524002029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新型磁共振弹簧无油线性压缩机,它利用磁共振弹簧提供恢复力,并采用气体润滑轴承为活塞提供支撑力。通过实验和理论分析,研究了压缩机的频率特性,包括磁性弹簧刚度、气体弹簧刚度和共振频率。设计压缩机的磁弹簧刚度为 31403.31 N/m。气体弹簧刚度采用了胡克定律和傅立叶分解法来测量压缩压力计。同时,通过电参数频率扫描的反步进技术,从压缩机的幅频特性中也得到了空气弹簧刚度。实验结果表明,这三种测量方法在测量空气弹簧刚度方面具有良好的一致性。在 3 MPa 充气压力下,使用三种方法和理论模型测得的等效空气弹簧刚度分别为 72600.92 N/m、71275.84 N/m、71967.15 N/m 和 71929.25 N/m。此外,还测试了由压缩机驱动的脉冲管低温冷却器的制冷性能,在不同充注压力下,冷端获得的最低温度为 46.3 K。此外,存在一个能提高脉冲管低温冷却器制冷性能的最佳频率,而且无论充注压力如何变化,这个最佳频率都保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the performance of oil-free linear compressor with magnetic resonance spring for pulse tube cryocooler
This study proposes a new type of oil-free linear compressor with a magnetic resonance spring, which uses a magnetic resonance spring to provide restoring force and adopts gas-lubricated bearings to provide support force for the piston. The frequency characteristics of the compressor, including magnetic spring stiffness, gas spring stiffness, and resonance frequency, are studied through experiments and theoretical analysis. The magnetic spring stiffness is 31403.31 N/m of the design compressor. Hooke’s law and Fourier decomposition are employed for the gas spring stiffness measuring the compression pressure gauged. Meanwhile, the gas spring stiffness is also obtained from the amplitude-frequency characteristic of the compressor by the back stepping technique with an electric parameter frequency scan. The experimental results demonstrate that the three measurement methods have good consistency in measuring the gas spring stiffness. The equivalent gas spring stiffness measured using the three methods and theoretical model are 72600.92 N/m, 71275.84 N/m, 71967.15 N/m, and 71929.25 N/m at 3 MPa charged pressure measured respectively. In addition, the refrigeration performance of the pulse tube cryocooler driven by the compressor is tested and the lowest temperature obtained in the cold end is 46.3 K under different charge pressure. Furthermore, an optimal frequency exists that enhances the refrigeration performance of the pulse tube cryocooler, and this optimal frequency remains constant regardless of changes in the charge pressure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信