水性聚氨酯改性混凝土在不同温度下的断裂韧性预测模型

IF 7.4 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Haoliang Dong , Huajian Li , Zhiqiang Yang , Henan Shi , Liangshun Li , Fali Huang , Zhen Wang , Zhonglai Yi
{"title":"水性聚氨酯改性混凝土在不同温度下的断裂韧性预测模型","authors":"Haoliang Dong ,&nbsp;Huajian Li ,&nbsp;Zhiqiang Yang ,&nbsp;Henan Shi ,&nbsp;Liangshun Li ,&nbsp;Fali Huang ,&nbsp;Zhen Wang ,&nbsp;Zhonglai Yi","doi":"10.1016/j.conbuildmat.2024.139146","DOIUrl":null,"url":null,"abstract":"<div><div>In certain extreme environments, the bearing capacity of concrete structures diminishes significantly as temperatures soar, simultaneously exposing them to a heightened risk of brittle cracking. The paper aims to elucidate the fracture toughness of waterborne polyurethane modified concrete (WPMC) at different temperatures. Furthermore, a predictive model for the fracture toughness of WPMC, which incorporates both temperature and the waterborne polyurethane (WP) content, is proposed. The flexural strength and fracture toughness of WPMC were tested separately at 20℃, 40℃, 60℃, and 80℃. Utilizing digital image correlation (DIC) technology, the bottom longitudinal strain of WPMC under flexural loading was analyzed. The impact of temperature and WP content on the energy absorption capacity and deformation behavior of WPMC exposed to extreme environment was also investigated. By introducing the microstructural parameters <em>C</em> and <em>C</em><sub>w</sub> to characterize the elastic and plastic deformations of WPMC before and after cracking, a prediction model between the microstructural parameters and temperature, WP content was established. This model enables the prediction of the fracture toughness <em>K</em><sub>IC</sub> of WPMC at different temperatures by measuring <em>F</em><sub>max</sub>.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"453 ","pages":"Article 139146"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction model for fracture toughness of waterborne polyurethane modified concrete at different temperatures\",\"authors\":\"Haoliang Dong ,&nbsp;Huajian Li ,&nbsp;Zhiqiang Yang ,&nbsp;Henan Shi ,&nbsp;Liangshun Li ,&nbsp;Fali Huang ,&nbsp;Zhen Wang ,&nbsp;Zhonglai Yi\",\"doi\":\"10.1016/j.conbuildmat.2024.139146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In certain extreme environments, the bearing capacity of concrete structures diminishes significantly as temperatures soar, simultaneously exposing them to a heightened risk of brittle cracking. The paper aims to elucidate the fracture toughness of waterborne polyurethane modified concrete (WPMC) at different temperatures. Furthermore, a predictive model for the fracture toughness of WPMC, which incorporates both temperature and the waterborne polyurethane (WP) content, is proposed. The flexural strength and fracture toughness of WPMC were tested separately at 20℃, 40℃, 60℃, and 80℃. Utilizing digital image correlation (DIC) technology, the bottom longitudinal strain of WPMC under flexural loading was analyzed. The impact of temperature and WP content on the energy absorption capacity and deformation behavior of WPMC exposed to extreme environment was also investigated. By introducing the microstructural parameters <em>C</em> and <em>C</em><sub>w</sub> to characterize the elastic and plastic deformations of WPMC before and after cracking, a prediction model between the microstructural parameters and temperature, WP content was established. This model enables the prediction of the fracture toughness <em>K</em><sub>IC</sub> of WPMC at different temperatures by measuring <em>F</em><sub>max</sub>.</div></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"453 \",\"pages\":\"Article 139146\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824042880\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824042880","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在某些极端环境下,混凝土结构的承载能力会随着温度的升高而显著降低,同时脆性开裂的风险也会增加。本文旨在阐明水性聚氨酯改性混凝土(WPMC)在不同温度下的断裂韧性。此外,本文还提出了一个包含温度和水性聚氨酯(WP)含量的 WPMC 断裂韧性预测模型。分别在 20℃、40℃、60℃ 和 80℃下测试了 WPMC 的抗弯强度和断裂韧性。利用数字图像相关(DIC)技术,分析了弯曲加载下 WPMC 的底部纵向应变。此外,还研究了温度和可湿性粉末含量对暴露于极端环境下的 WPMC 能量吸收能力和变形行为的影响。通过引入微观结构参数 C 和 Cw 来表征 WPMC 在开裂前后的弹性和塑性变形,建立了微观结构参数与温度、可湿性粉剂含量之间的预测模型。该模型可通过测量 Fmax 预测不同温度下 WPMC 的断裂韧性 KIC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction model for fracture toughness of waterborne polyurethane modified concrete at different temperatures
In certain extreme environments, the bearing capacity of concrete structures diminishes significantly as temperatures soar, simultaneously exposing them to a heightened risk of brittle cracking. The paper aims to elucidate the fracture toughness of waterborne polyurethane modified concrete (WPMC) at different temperatures. Furthermore, a predictive model for the fracture toughness of WPMC, which incorporates both temperature and the waterborne polyurethane (WP) content, is proposed. The flexural strength and fracture toughness of WPMC were tested separately at 20℃, 40℃, 60℃, and 80℃. Utilizing digital image correlation (DIC) technology, the bottom longitudinal strain of WPMC under flexural loading was analyzed. The impact of temperature and WP content on the energy absorption capacity and deformation behavior of WPMC exposed to extreme environment was also investigated. By introducing the microstructural parameters C and Cw to characterize the elastic and plastic deformations of WPMC before and after cracking, a prediction model between the microstructural parameters and temperature, WP content was established. This model enables the prediction of the fracture toughness KIC of WPMC at different temperatures by measuring Fmax.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Construction and Building Materials
Construction and Building Materials 工程技术-材料科学:综合
CiteScore
13.80
自引率
21.60%
发文量
3632
审稿时长
82 days
期刊介绍: Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged. Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信