从概率角度看值得信赖的智能海上风力涡轮机疲劳裂纹扩展预测框架

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Linfeng Li , Jianjun Qin , Yue Pan , Junxiang Xu , Michael Havbro Faber
{"title":"从概率角度看值得信赖的智能海上风力涡轮机疲劳裂纹扩展预测框架","authors":"Linfeng Li ,&nbsp;Jianjun Qin ,&nbsp;Yue Pan ,&nbsp;Junxiang Xu ,&nbsp;Michael Havbro Faber","doi":"10.1016/j.oceaneng.2024.119739","DOIUrl":null,"url":null,"abstract":"<div><div>A critical task for the reliability analysis and risk management of offshore wind turbines (OWT) is to accurately and efficiently predict the fatigue crack propagation over the service life. To realize the goal, a novel long and short-term network (LSTM)-based deep learning model integrated with full probabilistic perspectives is proposed to effectively handle time-varying and multi-source uncertainties associated with long-term fatigue crack propagation in OWTs. Based on the identification of the imbalance in the instance set and the inconsistency of the prediction model within the feasible regions of multiple uncertain parameters, a multi-bin progressive self-supervised learning (MPSL) framework is formulated afterwards. The trustworthiness of this framework is validated by the investigations on the fatigue crack propagation prediction of the National Renewable Energy Laboratory (NREL) 5 MW OWT. Our findings demonstrate significant gains in prediction accuracy and efficiency, juxtaposed with the traditional Paris model-based numerical simulation framework. Ultimately, the proposed trustworthy MPSL framework offers the stakeholders a robust tool for identifying the OWT fatigue crack propagation, advancing early risk perception and management in practice engineering.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"314 ","pages":"Article 119739"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A trustworthy intelligent offshore wind turbine fatigue crack propagation prediction framework from the probabilistic perspective\",\"authors\":\"Linfeng Li ,&nbsp;Jianjun Qin ,&nbsp;Yue Pan ,&nbsp;Junxiang Xu ,&nbsp;Michael Havbro Faber\",\"doi\":\"10.1016/j.oceaneng.2024.119739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A critical task for the reliability analysis and risk management of offshore wind turbines (OWT) is to accurately and efficiently predict the fatigue crack propagation over the service life. To realize the goal, a novel long and short-term network (LSTM)-based deep learning model integrated with full probabilistic perspectives is proposed to effectively handle time-varying and multi-source uncertainties associated with long-term fatigue crack propagation in OWTs. Based on the identification of the imbalance in the instance set and the inconsistency of the prediction model within the feasible regions of multiple uncertain parameters, a multi-bin progressive self-supervised learning (MPSL) framework is formulated afterwards. The trustworthiness of this framework is validated by the investigations on the fatigue crack propagation prediction of the National Renewable Energy Laboratory (NREL) 5 MW OWT. Our findings demonstrate significant gains in prediction accuracy and efficiency, juxtaposed with the traditional Paris model-based numerical simulation framework. Ultimately, the proposed trustworthy MPSL framework offers the stakeholders a robust tool for identifying the OWT fatigue crack propagation, advancing early risk perception and management in practice engineering.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"314 \",\"pages\":\"Article 119739\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801824030774\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801824030774","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

海上风力涡轮机(OWT)可靠性分析和风险管理的一项关键任务是准确有效地预测使用寿命内的疲劳裂纹扩展。为实现这一目标,我们提出了一种基于长短期网络(LSTM)的新型深度学习模型,该模型结合了全概率视角,可有效处理与海上风电机组长期疲劳裂纹扩展相关的时变和多源不确定性。在识别实例集的不平衡性和预测模型在多个不确定参数可行区域内的不一致性的基础上,随后制定了一个多分区渐进式自监督学习(MPSL)框架。对美国国家可再生能源实验室(NREL)5 兆瓦 OWT 疲劳裂纹扩展预测的研究验证了该框架的可信度。我们的研究结果表明,与传统的基于巴黎模型的数值模拟框架相比,该框架在预测精度和效率方面都有显著提高。最终,所提出的可信 MPSL 框架为利益相关者提供了一个用于识别 OWT 疲劳裂纹扩展的强大工具,推动了实践工程中的早期风险感知和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A trustworthy intelligent offshore wind turbine fatigue crack propagation prediction framework from the probabilistic perspective
A critical task for the reliability analysis and risk management of offshore wind turbines (OWT) is to accurately and efficiently predict the fatigue crack propagation over the service life. To realize the goal, a novel long and short-term network (LSTM)-based deep learning model integrated with full probabilistic perspectives is proposed to effectively handle time-varying and multi-source uncertainties associated with long-term fatigue crack propagation in OWTs. Based on the identification of the imbalance in the instance set and the inconsistency of the prediction model within the feasible regions of multiple uncertain parameters, a multi-bin progressive self-supervised learning (MPSL) framework is formulated afterwards. The trustworthiness of this framework is validated by the investigations on the fatigue crack propagation prediction of the National Renewable Energy Laboratory (NREL) 5 MW OWT. Our findings demonstrate significant gains in prediction accuracy and efficiency, juxtaposed with the traditional Paris model-based numerical simulation framework. Ultimately, the proposed trustworthy MPSL framework offers the stakeholders a robust tool for identifying the OWT fatigue crack propagation, advancing early risk perception and management in practice engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信