{"title":"一般双面正交分裂二次相位克利福德-傅里叶变换","authors":"H. Monaim , M. Faress","doi":"10.1016/j.jmaa.2024.129009","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides the general double-sided orthogonal <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>-dimensional spaces split quadratic phase Clifford-Fourier transform and the general Short-time quadratic phase Clifford-Fourier transform. It proves the Rènyi and Shannon entropy and Lieb's uncertainty principles.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129009"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General double-sided orthogonal split quadratic phase Clifford-Fourier transform\",\"authors\":\"H. Monaim , M. Faress\",\"doi\":\"10.1016/j.jmaa.2024.129009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper provides the general double-sided orthogonal <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>-dimensional spaces split quadratic phase Clifford-Fourier transform and the general Short-time quadratic phase Clifford-Fourier transform. It proves the Rènyi and Shannon entropy and Lieb's uncertainty principles.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129009\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009314\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009314","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
General double-sided orthogonal split quadratic phase Clifford-Fourier transform
This paper provides the general double-sided orthogonal -dimensional spaces split quadratic phase Clifford-Fourier transform and the general Short-time quadratic phase Clifford-Fourier transform. It proves the Rènyi and Shannon entropy and Lieb's uncertainty principles.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.