{"title":"将二氧化碳直接转化为清洁燃料的双功能催化剂:机理认识和综合动力学模型","authors":"Masoud Safari Yazd, Jafar Towfighi Darian","doi":"10.1016/j.fuproc.2024.108152","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating global concern over CO<sub>2</sub> emissions has spurred extensive research aimed at developing innovative solutions for capturing, storing, and utilizing CO<sub>2</sub>, crucial for establishing a closed carbon loop. Thermo-catalytic CO<sub>2</sub> hydrogenation stands out as a promising approach, though challenged by CO<sub>2</sub>'s high stability, hindering the production of heavy liquid hydrocarbons. This study explores the design and performance of a bifunctional cobalt-based catalyst, promoted by Ru and supported by multiple shells of carbon, mesoporous silica, and ceria for CO<sub>2</sub> hydrogenation in the Modified Fischer-Tropsch Synthesis (MFTS) route. Through meticulous characterization and evaluation, the catalyst demonstrates suitable textural properties, reducibility, and dispersion of active sites, promoting CO<sub>2</sub> conversion and selectivity towards heavier hydrocarbons, highlighting the significance of catalyst design and operating conditions. The catalyst exhibits notable stability across catalyst deactivation, attributed to its thermal conductivity provided by SiC matrices. SiC-supported catalysts play a pivotal role in enhancing the efficiency, selectivity, and stability of CO<sub>2</sub> hydrogenation catalysts. Moreover, in this study, through meticulous evaluation of elementary reactions based on molecular dynamic (MD) computations, a detailed mechanism for MFTS is presented. Key to this mechanism is the H-assisted CO<sub>2</sub> dissociation pathway, supported by computational analysis. The pathway involves sequential reactions starting from CO<sub>2</sub> adsorption on catalyst sites, followed by successive transformations leading to the formation of hydrocarbon building blocks. Ultimately, a developed MFTS kinetic model based on the MD-evaluated mechanism, which accurately predicts product selectivity across various operational conditions, indicating its robustness and reliability, is presented.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"266 ","pages":"Article 108152"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bifunctional catalyst for direct CO2 conversion to clean fuels: Mechanistic insights and a comprehensive kinetic model\",\"authors\":\"Masoud Safari Yazd, Jafar Towfighi Darian\",\"doi\":\"10.1016/j.fuproc.2024.108152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The escalating global concern over CO<sub>2</sub> emissions has spurred extensive research aimed at developing innovative solutions for capturing, storing, and utilizing CO<sub>2</sub>, crucial for establishing a closed carbon loop. Thermo-catalytic CO<sub>2</sub> hydrogenation stands out as a promising approach, though challenged by CO<sub>2</sub>'s high stability, hindering the production of heavy liquid hydrocarbons. This study explores the design and performance of a bifunctional cobalt-based catalyst, promoted by Ru and supported by multiple shells of carbon, mesoporous silica, and ceria for CO<sub>2</sub> hydrogenation in the Modified Fischer-Tropsch Synthesis (MFTS) route. Through meticulous characterization and evaluation, the catalyst demonstrates suitable textural properties, reducibility, and dispersion of active sites, promoting CO<sub>2</sub> conversion and selectivity towards heavier hydrocarbons, highlighting the significance of catalyst design and operating conditions. The catalyst exhibits notable stability across catalyst deactivation, attributed to its thermal conductivity provided by SiC matrices. SiC-supported catalysts play a pivotal role in enhancing the efficiency, selectivity, and stability of CO<sub>2</sub> hydrogenation catalysts. Moreover, in this study, through meticulous evaluation of elementary reactions based on molecular dynamic (MD) computations, a detailed mechanism for MFTS is presented. Key to this mechanism is the H-assisted CO<sub>2</sub> dissociation pathway, supported by computational analysis. The pathway involves sequential reactions starting from CO<sub>2</sub> adsorption on catalyst sites, followed by successive transformations leading to the formation of hydrocarbon building blocks. Ultimately, a developed MFTS kinetic model based on the MD-evaluated mechanism, which accurately predicts product selectivity across various operational conditions, indicating its robustness and reliability, is presented.</div></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"266 \",\"pages\":\"Article 108152\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037838202400122X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838202400122X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
A bifunctional catalyst for direct CO2 conversion to clean fuels: Mechanistic insights and a comprehensive kinetic model
The escalating global concern over CO2 emissions has spurred extensive research aimed at developing innovative solutions for capturing, storing, and utilizing CO2, crucial for establishing a closed carbon loop. Thermo-catalytic CO2 hydrogenation stands out as a promising approach, though challenged by CO2's high stability, hindering the production of heavy liquid hydrocarbons. This study explores the design and performance of a bifunctional cobalt-based catalyst, promoted by Ru and supported by multiple shells of carbon, mesoporous silica, and ceria for CO2 hydrogenation in the Modified Fischer-Tropsch Synthesis (MFTS) route. Through meticulous characterization and evaluation, the catalyst demonstrates suitable textural properties, reducibility, and dispersion of active sites, promoting CO2 conversion and selectivity towards heavier hydrocarbons, highlighting the significance of catalyst design and operating conditions. The catalyst exhibits notable stability across catalyst deactivation, attributed to its thermal conductivity provided by SiC matrices. SiC-supported catalysts play a pivotal role in enhancing the efficiency, selectivity, and stability of CO2 hydrogenation catalysts. Moreover, in this study, through meticulous evaluation of elementary reactions based on molecular dynamic (MD) computations, a detailed mechanism for MFTS is presented. Key to this mechanism is the H-assisted CO2 dissociation pathway, supported by computational analysis. The pathway involves sequential reactions starting from CO2 adsorption on catalyst sites, followed by successive transformations leading to the formation of hydrocarbon building blocks. Ultimately, a developed MFTS kinetic model based on the MD-evaluated mechanism, which accurately predicts product selectivity across various operational conditions, indicating its robustness and reliability, is presented.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.