Linghao Kong , Wenkai Feng , Xiaoyu Yi , Zhenghai Xue , Luyao Bai
{"title":"在数据稀缺地区,通过无监督的 \"少量镜头学习 \"增强滑坡易感性绘图","authors":"Linghao Kong , Wenkai Feng , Xiaoyu Yi , Zhenghai Xue , Luyao Bai","doi":"10.1016/j.gr.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>Given the critical need to assess landslide hazards, producing landslide susceptibility map (LSM) in regions with scarce historical landslide inventories poses significant challenges. This study introduces a novel landslide susceptibility assessment framework that combines unsupervised learning strategies with few-shot learning methods to increase the accuracy of LSM in these areas. The framework has been practically validated in a representative geological disaster-prone area along the West-East Gas Pipeline in Shaanxi Province, China. We employed three advanced few-shot learning models: a support vector machine, <em>meta</em>-learning, and transfer learning. These models implement feature representation learning for weakly correlated influencing factors through an unsupervised approach, thereby constructing an effective landslide susceptibility assessment model. We compared traditional learning methods and used the receiver operating characteristic (ROC) curve and SHAP values to quantify the effectiveness of the models. The results indicate that the <em>meta</em>-learning algorithm outperforms both the SVM and transfer learning in areas with limited landslide data. The integration of unsupervised strategies significantly improves performance, achieving area under the curve (AUC) values of 0.9385 and 0.9861, respectively. Compared with using <em>meta</em>-learning alone, incorporating unsupervised learning strategies increased the AUC by 4.76%, enhancing both the predictive power of the model and the interpretability of the features. Meta-learning under unsupervised conditions effectively mitigates the evaluation difficulties caused by insufficient landslide records, providing a viable path and empirical evidence for performance improvement in similar data- scarce regions worldwide.</div></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"138 ","pages":"Pages 31-46"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced landslide susceptibility mapping in data-scarce regions via unsupervised few-shot learning\",\"authors\":\"Linghao Kong , Wenkai Feng , Xiaoyu Yi , Zhenghai Xue , Luyao Bai\",\"doi\":\"10.1016/j.gr.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given the critical need to assess landslide hazards, producing landslide susceptibility map (LSM) in regions with scarce historical landslide inventories poses significant challenges. This study introduces a novel landslide susceptibility assessment framework that combines unsupervised learning strategies with few-shot learning methods to increase the accuracy of LSM in these areas. The framework has been practically validated in a representative geological disaster-prone area along the West-East Gas Pipeline in Shaanxi Province, China. We employed three advanced few-shot learning models: a support vector machine, <em>meta</em>-learning, and transfer learning. These models implement feature representation learning for weakly correlated influencing factors through an unsupervised approach, thereby constructing an effective landslide susceptibility assessment model. We compared traditional learning methods and used the receiver operating characteristic (ROC) curve and SHAP values to quantify the effectiveness of the models. The results indicate that the <em>meta</em>-learning algorithm outperforms both the SVM and transfer learning in areas with limited landslide data. The integration of unsupervised strategies significantly improves performance, achieving area under the curve (AUC) values of 0.9385 and 0.9861, respectively. Compared with using <em>meta</em>-learning alone, incorporating unsupervised learning strategies increased the AUC by 4.76%, enhancing both the predictive power of the model and the interpretability of the features. Meta-learning under unsupervised conditions effectively mitigates the evaluation difficulties caused by insufficient landslide records, providing a viable path and empirical evidence for performance improvement in similar data- scarce regions worldwide.</div></div>\",\"PeriodicalId\":12761,\"journal\":{\"name\":\"Gondwana Research\",\"volume\":\"138 \",\"pages\":\"Pages 31-46\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gondwana Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1342937X2400306X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X2400306X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced landslide susceptibility mapping in data-scarce regions via unsupervised few-shot learning
Given the critical need to assess landslide hazards, producing landslide susceptibility map (LSM) in regions with scarce historical landslide inventories poses significant challenges. This study introduces a novel landslide susceptibility assessment framework that combines unsupervised learning strategies with few-shot learning methods to increase the accuracy of LSM in these areas. The framework has been practically validated in a representative geological disaster-prone area along the West-East Gas Pipeline in Shaanxi Province, China. We employed three advanced few-shot learning models: a support vector machine, meta-learning, and transfer learning. These models implement feature representation learning for weakly correlated influencing factors through an unsupervised approach, thereby constructing an effective landslide susceptibility assessment model. We compared traditional learning methods and used the receiver operating characteristic (ROC) curve and SHAP values to quantify the effectiveness of the models. The results indicate that the meta-learning algorithm outperforms both the SVM and transfer learning in areas with limited landslide data. The integration of unsupervised strategies significantly improves performance, achieving area under the curve (AUC) values of 0.9385 and 0.9861, respectively. Compared with using meta-learning alone, incorporating unsupervised learning strategies increased the AUC by 4.76%, enhancing both the predictive power of the model and the interpretability of the features. Meta-learning under unsupervised conditions effectively mitigates the evaluation difficulties caused by insufficient landslide records, providing a viable path and empirical evidence for performance improvement in similar data- scarce regions worldwide.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.