Zhipeng Tang , Yongmei Li , Kaixuan Tan , Guohui Wang , Chunguang Li , Longcheng Liu , Zhenzhong Liu
{"title":"利用流动电极电容式去离子法高效去除酸污染地下水中的铀和硫酸盐","authors":"Zhipeng Tang , Yongmei Li , Kaixuan Tan , Guohui Wang , Chunguang Li , Longcheng Liu , Zhenzhong Liu","doi":"10.1016/j.desal.2024.118304","DOIUrl":null,"url":null,"abstract":"<div><div>In-situ leaching (ISL) causes non-negligible groundwater pollution. It is urgent to remediate the groundwater after ISL activities. In this study, we evaluated the effectiveness of flow electrode capacitive deionization (FCDI) to treat a simulated groundwater, the uranium (U) and SO<sub>4</sub><sup>2−</sup> concentration of which are comparable to groundwater in acid in-situ leaching (AISL) uranium mine for the first time. Moreover, the removal mechanism of U and SO<sub>4</sub><sup>2−</sup> were investigated in-depth. It is found that the operational mode, applied voltage and initial SO<sub>4</sub><sup>2−</sup> concentration significantly affect the removal of U and SO<sub>4</sub><sup>2−</sup> by FCDI. The removal efficiency of U and SO<sub>4</sub><sup>2−</sup> were above 98 % at 75 min under optimal condition, although U in groundwater mainly existed in the form of uncharged UO<sub>2</sub>(SO<sub>4</sub>), followed by UO<sub>2</sub><sup>2+</sup> and UO<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub><sup>2−</sup>. UO<sub>2</sub><sup>2+</sup> and UO<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub><sup>2−</sup> in groundwater migrated into the two poles and were quickly absorbed by flow electrode, which promoted the dissociation of UO<sub>2</sub>(SO<sub>4</sub>) or complexation of UO<sub>2</sub>(SO<sub>4</sub>) with SO<sub>4</sub><sup>2−</sup>. In addition, the anion exchange membrane can absorb UO<sub>2</sub>(SO<sub>4</sub>) through complexation. These resulted in the efficient removal of U(VI). FCDI can reduce the U and SO<sub>4</sub><sup>2−</sup> concentration of the contaminated water (<em>C</em><sub>U</sub> = 10 mg L<sup>−1</sup>, <em>C</em><sub>SO4</sub><sup>2−</sup> = 5 g L<sup>−1</sup>) to a value lower than the Chinese emission limit (U: 300 μg L<sup>−1</sup>; SO<sub>4</sub><sup>2−</sup>: 250 mg L<sup>−1</sup>) even after 18 cycles with each cycle operated for 120 min, which informed that FCDI system using activated carbon is of great potential for acidic contaminated water treatment.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118304"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient removal of uranium and sulfate in acid contaminated groundwater by flow electrode capacitive deionization\",\"authors\":\"Zhipeng Tang , Yongmei Li , Kaixuan Tan , Guohui Wang , Chunguang Li , Longcheng Liu , Zhenzhong Liu\",\"doi\":\"10.1016/j.desal.2024.118304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In-situ leaching (ISL) causes non-negligible groundwater pollution. It is urgent to remediate the groundwater after ISL activities. In this study, we evaluated the effectiveness of flow electrode capacitive deionization (FCDI) to treat a simulated groundwater, the uranium (U) and SO<sub>4</sub><sup>2−</sup> concentration of which are comparable to groundwater in acid in-situ leaching (AISL) uranium mine for the first time. Moreover, the removal mechanism of U and SO<sub>4</sub><sup>2−</sup> were investigated in-depth. It is found that the operational mode, applied voltage and initial SO<sub>4</sub><sup>2−</sup> concentration significantly affect the removal of U and SO<sub>4</sub><sup>2−</sup> by FCDI. The removal efficiency of U and SO<sub>4</sub><sup>2−</sup> were above 98 % at 75 min under optimal condition, although U in groundwater mainly existed in the form of uncharged UO<sub>2</sub>(SO<sub>4</sub>), followed by UO<sub>2</sub><sup>2+</sup> and UO<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub><sup>2−</sup>. UO<sub>2</sub><sup>2+</sup> and UO<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub><sup>2−</sup> in groundwater migrated into the two poles and were quickly absorbed by flow electrode, which promoted the dissociation of UO<sub>2</sub>(SO<sub>4</sub>) or complexation of UO<sub>2</sub>(SO<sub>4</sub>) with SO<sub>4</sub><sup>2−</sup>. In addition, the anion exchange membrane can absorb UO<sub>2</sub>(SO<sub>4</sub>) through complexation. These resulted in the efficient removal of U(VI). FCDI can reduce the U and SO<sub>4</sub><sup>2−</sup> concentration of the contaminated water (<em>C</em><sub>U</sub> = 10 mg L<sup>−1</sup>, <em>C</em><sub>SO4</sub><sup>2−</sup> = 5 g L<sup>−1</sup>) to a value lower than the Chinese emission limit (U: 300 μg L<sup>−1</sup>; SO<sub>4</sub><sup>2−</sup>: 250 mg L<sup>−1</sup>) even after 18 cycles with each cycle operated for 120 min, which informed that FCDI system using activated carbon is of great potential for acidic contaminated water treatment.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"594 \",\"pages\":\"Article 118304\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424010154\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424010154","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Efficient removal of uranium and sulfate in acid contaminated groundwater by flow electrode capacitive deionization
In-situ leaching (ISL) causes non-negligible groundwater pollution. It is urgent to remediate the groundwater after ISL activities. In this study, we evaluated the effectiveness of flow electrode capacitive deionization (FCDI) to treat a simulated groundwater, the uranium (U) and SO42− concentration of which are comparable to groundwater in acid in-situ leaching (AISL) uranium mine for the first time. Moreover, the removal mechanism of U and SO42− were investigated in-depth. It is found that the operational mode, applied voltage and initial SO42− concentration significantly affect the removal of U and SO42− by FCDI. The removal efficiency of U and SO42− were above 98 % at 75 min under optimal condition, although U in groundwater mainly existed in the form of uncharged UO2(SO4), followed by UO22+ and UO2(SO4)22−. UO22+ and UO2(SO4)22− in groundwater migrated into the two poles and were quickly absorbed by flow electrode, which promoted the dissociation of UO2(SO4) or complexation of UO2(SO4) with SO42−. In addition, the anion exchange membrane can absorb UO2(SO4) through complexation. These resulted in the efficient removal of U(VI). FCDI can reduce the U and SO42− concentration of the contaminated water (CU = 10 mg L−1, CSO42− = 5 g L−1) to a value lower than the Chinese emission limit (U: 300 μg L−1; SO42−: 250 mg L−1) even after 18 cycles with each cycle operated for 120 min, which informed that FCDI system using activated carbon is of great potential for acidic contaminated water treatment.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.