等弦紧密融合框架的奈马克空间族

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Matthew Fickus, Benjamin R. Mayo, Cody E. Watson
{"title":"等弦紧密融合框架的奈马克空间族","authors":"Matthew Fickus,&nbsp;Benjamin R. Mayo,&nbsp;Cody E. Watson","doi":"10.1016/j.acha.2024.101720","DOIUrl":null,"url":null,"abstract":"<div><div>An equichordal tight fusion frame (<figure><img></figure>) is a finite sequence of equi-dimensional subspaces of a Euclidean space that achieves equality in Conway, Hardin and Sloane's simplex bound. Every <figure><img></figure> is a type of optimal Grassmannian code, being a way to arrange a given number of members of a Grassmannian so that the minimal chordal distance between any pair of them is as large as possible. Any nontrivial <figure><img></figure> has both a Naimark complement and spatial complement which themselves are <figure><img></figure>s. We show that taking iterated alternating Naimark and spatial complements of any <figure><img></figure> of at least five subspaces yields an infinite family of <figure><img></figure>s with pairwise distinct parameters. Generalizing a method by King, we then construct <figure><img></figure>s from difference families for finite abelian groups, and use our Naimark-spatial theory to gauge their novelty.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"74 ","pages":"Article 101720"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Naimark-spatial families of equichordal tight fusion frames\",\"authors\":\"Matthew Fickus,&nbsp;Benjamin R. Mayo,&nbsp;Cody E. Watson\",\"doi\":\"10.1016/j.acha.2024.101720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An equichordal tight fusion frame (<figure><img></figure>) is a finite sequence of equi-dimensional subspaces of a Euclidean space that achieves equality in Conway, Hardin and Sloane's simplex bound. Every <figure><img></figure> is a type of optimal Grassmannian code, being a way to arrange a given number of members of a Grassmannian so that the minimal chordal distance between any pair of them is as large as possible. Any nontrivial <figure><img></figure> has both a Naimark complement and spatial complement which themselves are <figure><img></figure>s. We show that taking iterated alternating Naimark and spatial complements of any <figure><img></figure> of at least five subspaces yields an infinite family of <figure><img></figure>s with pairwise distinct parameters. Generalizing a method by King, we then construct <figure><img></figure>s from difference families for finite abelian groups, and use our Naimark-spatial theory to gauge their novelty.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"74 \",\"pages\":\"Article 101720\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000976\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000976","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

等弦密融合框()是欧几里得空间的等维子空间的有限序列,它在康威、哈丁和斯隆的单数约束中达到相等。每一个都是一种最优格拉斯曼编码,是一种排列给定数量的格拉斯曼成员,使任意一对成员之间的最小弦距尽可能大的方法。我们的研究表明,对至少五个子空间中的任意子空间进行迭代交替的奈马克补集和空间补集,就能得到一个具有成对不同参数的无穷 s 族。然后,我们推广了金的一种方法,从有限无性群的差分族中构造出 s,并利用我们的奈马克空间理论来衡量它们的新颖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naimark-spatial families of equichordal tight fusion frames
An equichordal tight fusion frame (
) is a finite sequence of equi-dimensional subspaces of a Euclidean space that achieves equality in Conway, Hardin and Sloane's simplex bound. Every
is a type of optimal Grassmannian code, being a way to arrange a given number of members of a Grassmannian so that the minimal chordal distance between any pair of them is as large as possible. Any nontrivial
has both a Naimark complement and spatial complement which themselves are
s. We show that taking iterated alternating Naimark and spatial complements of any
of at least five subspaces yields an infinite family of
s with pairwise distinct parameters. Generalizing a method by King, we then construct
s from difference families for finite abelian groups, and use our Naimark-spatial theory to gauge their novelty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信