将人工智能融入食品污染物分析:提高质量,保护环境

IF 5.4 Q2 ENGINEERING, ENVIRONMENTAL
Sathishkumar Kuppusamy , Moovendhan Meivelu , Loganathan Praburaman , Mohammed Mujahid Alam , Abdullah G. Al-Sehemi , Anbarasu K
{"title":"将人工智能融入食品污染物分析:提高质量,保护环境","authors":"Sathishkumar Kuppusamy ,&nbsp;Moovendhan Meivelu ,&nbsp;Loganathan Praburaman ,&nbsp;Mohammed Mujahid Alam ,&nbsp;Abdullah G. Al-Sehemi ,&nbsp;Anbarasu K","doi":"10.1016/j.hazadv.2024.100509","DOIUrl":null,"url":null,"abstract":"<div><div>This paper marks a groundbreaking step toward ensuring food safety by applying artificial intelligence (AI) in the detection of food contaminants. It argues that AI offers a significant advantage over traditional methods, addressing both food safety and environmental risk issues. We aim to make rapid, precise online analysis of chemical contaminants a reality. While traditional methods work well, they struggle with the demands for simplicity, large datasets and speed. In contrast, AI excels with its data manipulation and predictive analytics. This paper explores AI's applications and future perspectives in detecting, quantifying and reducing food contaminants, showcasing examples like machine learning, neural networks, and data mining techniques for identifying pests, heavy metals and mycotoxins. Additionally, AI-driven sensor technologies and spectroscopic methods are discussed for improving detection accuracy. AI's real-time detection capabilities can help prevent health crises and economic loss, while its predictive power supports sustainable agriculture by reducing the use of harmful chemicals.</div></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"16 ","pages":"Article 100509"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating AI in food contaminant analysis: Enhancing quality and environmental protection\",\"authors\":\"Sathishkumar Kuppusamy ,&nbsp;Moovendhan Meivelu ,&nbsp;Loganathan Praburaman ,&nbsp;Mohammed Mujahid Alam ,&nbsp;Abdullah G. Al-Sehemi ,&nbsp;Anbarasu K\",\"doi\":\"10.1016/j.hazadv.2024.100509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper marks a groundbreaking step toward ensuring food safety by applying artificial intelligence (AI) in the detection of food contaminants. It argues that AI offers a significant advantage over traditional methods, addressing both food safety and environmental risk issues. We aim to make rapid, precise online analysis of chemical contaminants a reality. While traditional methods work well, they struggle with the demands for simplicity, large datasets and speed. In contrast, AI excels with its data manipulation and predictive analytics. This paper explores AI's applications and future perspectives in detecting, quantifying and reducing food contaminants, showcasing examples like machine learning, neural networks, and data mining techniques for identifying pests, heavy metals and mycotoxins. Additionally, AI-driven sensor technologies and spectroscopic methods are discussed for improving detection accuracy. AI's real-time detection capabilities can help prevent health crises and economic loss, while its predictive power supports sustainable agriculture by reducing the use of harmful chemicals.</div></div>\",\"PeriodicalId\":73763,\"journal\":{\"name\":\"Journal of hazardous materials advances\",\"volume\":\"16 \",\"pages\":\"Article 100509\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772416624001104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772416624001104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文标志着在应用人工智能(AI)检测食品污染物以确保食品安全方面迈出了开创性的一步。本文认为,与传统方法相比,人工智能在解决食品安全和环境风险问题方面具有显著优势。我们的目标是实现快速、精确的在线化学污染物分析。虽然传统方法效果很好,但在简便性、大型数据集和速度方面却难以满足要求。相比之下,人工智能在数据处理和预测分析方面表现出色。本文探讨了人工智能在检测、量化和减少食品污染物方面的应用和未来前景,举例说明了机器学习、神经网络和数据挖掘技术在识别害虫、重金属和霉菌毒素方面的应用。此外,还讨论了人工智能驱动的传感器技术和光谱方法,以提高检测精度。人工智能的实时检测能力有助于防止健康危机和经济损失,而其预测能力可减少有害化学品的使用,从而支持可持续农业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating AI in food contaminant analysis: Enhancing quality and environmental protection

Integrating AI in food contaminant analysis: Enhancing quality and environmental protection
This paper marks a groundbreaking step toward ensuring food safety by applying artificial intelligence (AI) in the detection of food contaminants. It argues that AI offers a significant advantage over traditional methods, addressing both food safety and environmental risk issues. We aim to make rapid, precise online analysis of chemical contaminants a reality. While traditional methods work well, they struggle with the demands for simplicity, large datasets and speed. In contrast, AI excels with its data manipulation and predictive analytics. This paper explores AI's applications and future perspectives in detecting, quantifying and reducing food contaminants, showcasing examples like machine learning, neural networks, and data mining techniques for identifying pests, heavy metals and mycotoxins. Additionally, AI-driven sensor technologies and spectroscopic methods are discussed for improving detection accuracy. AI's real-time detection capabilities can help prevent health crises and economic loss, while its predictive power supports sustainable agriculture by reducing the use of harmful chemicals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of hazardous materials advances
Journal of hazardous materials advances Environmental Engineering
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
50 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信