基于全非线性模型的内孤波传播及其被垂直墙壁反射的数值研究

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL
Yingjie Hu , Xinyu Ma , Li Zou , Zongbing Yu , Jianshi Zhao
{"title":"基于全非线性模型的内孤波传播及其被垂直墙壁反射的数值研究","authors":"Yingjie Hu ,&nbsp;Xinyu Ma ,&nbsp;Li Zou ,&nbsp;Zongbing Yu ,&nbsp;Jianshi Zhao","doi":"10.1016/j.oceaneng.2024.119776","DOIUrl":null,"url":null,"abstract":"<div><div>Propagation of internal solitary waves (ISWs) influenced by typical structures have garnered significant attention. We investigate the propagation of ISWs and their reflection by a vertical wall using multi-domain boundary element method (MDBEM). Fully nonlinear boundary conditions at the interface and free surface conditions at the top surface are considered in the simulations. Meanwhile, laboratory experiments are conducted to validate the constructed numerical model. Wave profiles, resident time, and flow fields for different initial amplitudes and density ratios are calculated and analyzed. Wave amplitudes significantly influence the nonlinear component of wave phase speed. The ratio between the nonlinear speed and the total velocity is only <span><math><mrow><mn>4.5</mn><mo>%</mo></mrow></math></span> for <span><math><mrow><mi>a</mi><mo>/</mo><msub><mi>h</mi><mn>1</mn></msub><mo>=</mo><mn>0.1</mn></mrow></math></span>, but this value can reach <span><math><mrow><mn>32</mn><mo>%</mo></mrow></math></span> for <span><math><mrow><mi>a</mi><mo>/</mo><msub><mi>h</mi><mn>1</mn></msub><mo>=</mo><mn>0.1</mn></mrow></math></span>. The resident time of an ISW attaching to the vertical wall decreases with the increasing initial wave amplitude and reaches a constant value for waves with amplitudes larger than <span><math><mrow><mi>a</mi><mo>/</mo><msub><mi>h</mi><mn>1</mn></msub><mo>=</mo><mn>0.6</mn></mrow></math></span>. Particle velocity in the upper layer is opposite to that in the lower layer, and the vertical velocity becomes dominant as the wave approaches the wall. Surface displacement, presented as a surface solitary wave with an opposite phase induced by an ISW, is obtained and discussed through the numerical model.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"314 ","pages":"Article 119776"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of the propagation of internal solitary waves and their reflection by a vertical wall based on a fully nonlinear model\",\"authors\":\"Yingjie Hu ,&nbsp;Xinyu Ma ,&nbsp;Li Zou ,&nbsp;Zongbing Yu ,&nbsp;Jianshi Zhao\",\"doi\":\"10.1016/j.oceaneng.2024.119776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Propagation of internal solitary waves (ISWs) influenced by typical structures have garnered significant attention. We investigate the propagation of ISWs and their reflection by a vertical wall using multi-domain boundary element method (MDBEM). Fully nonlinear boundary conditions at the interface and free surface conditions at the top surface are considered in the simulations. Meanwhile, laboratory experiments are conducted to validate the constructed numerical model. Wave profiles, resident time, and flow fields for different initial amplitudes and density ratios are calculated and analyzed. Wave amplitudes significantly influence the nonlinear component of wave phase speed. The ratio between the nonlinear speed and the total velocity is only <span><math><mrow><mn>4.5</mn><mo>%</mo></mrow></math></span> for <span><math><mrow><mi>a</mi><mo>/</mo><msub><mi>h</mi><mn>1</mn></msub><mo>=</mo><mn>0.1</mn></mrow></math></span>, but this value can reach <span><math><mrow><mn>32</mn><mo>%</mo></mrow></math></span> for <span><math><mrow><mi>a</mi><mo>/</mo><msub><mi>h</mi><mn>1</mn></msub><mo>=</mo><mn>0.1</mn></mrow></math></span>. The resident time of an ISW attaching to the vertical wall decreases with the increasing initial wave amplitude and reaches a constant value for waves with amplitudes larger than <span><math><mrow><mi>a</mi><mo>/</mo><msub><mi>h</mi><mn>1</mn></msub><mo>=</mo><mn>0.6</mn></mrow></math></span>. Particle velocity in the upper layer is opposite to that in the lower layer, and the vertical velocity becomes dominant as the wave approaches the wall. Surface displacement, presented as a surface solitary wave with an opposite phase induced by an ISW, is obtained and discussed through the numerical model.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"314 \",\"pages\":\"Article 119776\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801824031147\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801824031147","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

受典型结构影响的内孤波(ISWs)的传播引起了广泛关注。我们使用多域边界元法 (MDBEM) 研究了内孤波的传播及其在垂直墙壁上的反射。模拟中考虑了界面的全非线性边界条件和顶面的自由表面条件。同时,还进行了实验室实验来验证所构建的数值模型。计算并分析了不同初始振幅和密度比下的波形、驻留时间和流场。波幅对波相速度的非线性分量有很大影响。当 a/h1=0.1 时,非线性速度与总速度的比值仅为 4.5%,但当 a/h1=0.1 时,该值可达 32%。附着在垂直壁上的 ISW 的驻留时间随着初始波幅的增大而减小,当波幅大于 a/h1=0.6 时,驻留时间达到恒定值。粒子在上层的速度与在下层的速度相反,当波浪接近墙壁时,垂直速度成为主要速度。通过数值模型得到并讨论了由 ISW 诱导的相位相反的表面孤波所产生的表面位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigation of the propagation of internal solitary waves and their reflection by a vertical wall based on a fully nonlinear model
Propagation of internal solitary waves (ISWs) influenced by typical structures have garnered significant attention. We investigate the propagation of ISWs and their reflection by a vertical wall using multi-domain boundary element method (MDBEM). Fully nonlinear boundary conditions at the interface and free surface conditions at the top surface are considered in the simulations. Meanwhile, laboratory experiments are conducted to validate the constructed numerical model. Wave profiles, resident time, and flow fields for different initial amplitudes and density ratios are calculated and analyzed. Wave amplitudes significantly influence the nonlinear component of wave phase speed. The ratio between the nonlinear speed and the total velocity is only 4.5% for a/h1=0.1, but this value can reach 32% for a/h1=0.1. The resident time of an ISW attaching to the vertical wall decreases with the increasing initial wave amplitude and reaches a constant value for waves with amplitudes larger than a/h1=0.6. Particle velocity in the upper layer is opposite to that in the lower layer, and the vertical velocity becomes dominant as the wave approaches the wall. Surface displacement, presented as a surface solitary wave with an opposite phase induced by an ISW, is obtained and discussed through the numerical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信