{"title":"不同温度下碳纳米管对 L-组氨酸的簇吸附","authors":"E.V. Butyrskaya , T.V. Eliseeva , D.T. Le","doi":"10.1016/j.micromeso.2024.113405","DOIUrl":null,"url":null,"abstract":"<div><div>The adsorption isotherms of L-histidine on MKN-SWCNT-S1 CNTs from aqueous solution at temperatures of 25, 35, 45, 55, 65 and 80 °C were interpreted within the framework of the single-layer cluster adsorption model. A new approach to determine the equilibrium parameters of the cluster adsorption isotherm equation and sorbate structure on CNTs, as well as a nonlinear modelling method, was applied. To confirm the cluster nature of amino acid adsorption on CNTs, the clustering criterion proposed in the previous work was applied, and the cluster structure was evaluated, which is significant for the application of CNTs in biomedicine. The found equilibrium parameters of adsorption were applied to the determination of thermodynamic characteristics of adsorption (changes in Gibbs energy, enthalpy and entropy) of L-histidine on CNTs and the character of adsorption was analysed.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"383 ","pages":"Article 113405"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster adsorption of L-histidine on carbon nanotubes at different temperatures\",\"authors\":\"E.V. Butyrskaya , T.V. Eliseeva , D.T. Le\",\"doi\":\"10.1016/j.micromeso.2024.113405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The adsorption isotherms of L-histidine on MKN-SWCNT-S1 CNTs from aqueous solution at temperatures of 25, 35, 45, 55, 65 and 80 °C were interpreted within the framework of the single-layer cluster adsorption model. A new approach to determine the equilibrium parameters of the cluster adsorption isotherm equation and sorbate structure on CNTs, as well as a nonlinear modelling method, was applied. To confirm the cluster nature of amino acid adsorption on CNTs, the clustering criterion proposed in the previous work was applied, and the cluster structure was evaluated, which is significant for the application of CNTs in biomedicine. The found equilibrium parameters of adsorption were applied to the determination of thermodynamic characteristics of adsorption (changes in Gibbs energy, enthalpy and entropy) of L-histidine on CNTs and the character of adsorption was analysed.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"383 \",\"pages\":\"Article 113405\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138718112400427X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138718112400427X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Cluster adsorption of L-histidine on carbon nanotubes at different temperatures
The adsorption isotherms of L-histidine on MKN-SWCNT-S1 CNTs from aqueous solution at temperatures of 25, 35, 45, 55, 65 and 80 °C were interpreted within the framework of the single-layer cluster adsorption model. A new approach to determine the equilibrium parameters of the cluster adsorption isotherm equation and sorbate structure on CNTs, as well as a nonlinear modelling method, was applied. To confirm the cluster nature of amino acid adsorption on CNTs, the clustering criterion proposed in the previous work was applied, and the cluster structure was evaluated, which is significant for the application of CNTs in biomedicine. The found equilibrium parameters of adsorption were applied to the determination of thermodynamic characteristics of adsorption (changes in Gibbs energy, enthalpy and entropy) of L-histidine on CNTs and the character of adsorption was analysed.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.