基于反双曲正弦函数变换的用于准确预测 PEM 燃料电池退化的改进型灰色 Verhulst 模型

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Ruike Huang , Xuexia Zhang , Sidi Dong , Lei Huang , Hongbo Liao , Yuan Li
{"title":"基于反双曲正弦函数变换的用于准确预测 PEM 燃料电池退化的改进型灰色 Verhulst 模型","authors":"Ruike Huang ,&nbsp;Xuexia Zhang ,&nbsp;Sidi Dong ,&nbsp;Lei Huang ,&nbsp;Hongbo Liao ,&nbsp;Yuan Li","doi":"10.1016/j.renene.2024.121770","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prognostication of degradation plays an essential role in effectively enhancing the operational lifespan of proton exchange membrane fuel cells (PEMFCs). This paper proposes a novel enhanced correctional grey Verhulst model (IHS-CRGVM-RE), designed to prognosticate the degradation process of PEMFCs using the voltage of PEMFCs stack as a health indicator. First, the inverse hyperbolic sine function transformation is employed to attain optimal smoothness in data treatment. Then, the background value within the grey Verhulst model framework is modified based on cellular automata with rectangle techniques. Finally, a residual correction mechanism is applied to delineate the influences of error outcomes concerning PEMFCs degradation. Rigorous validation is provided via a comprehensive analysis based on two distinct PEMFCs datasets. The results demonstrate that the proposed model outperforms other data-driven models in prognostication accuracy, highlighting its significant importance for prognosticating the lifespan of PEMFCs.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121770"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A refined grey Verhulst model for accurate degradation prognostication of PEM fuel cells based on inverse hyperbolic sine function transformation\",\"authors\":\"Ruike Huang ,&nbsp;Xuexia Zhang ,&nbsp;Sidi Dong ,&nbsp;Lei Huang ,&nbsp;Hongbo Liao ,&nbsp;Yuan Li\",\"doi\":\"10.1016/j.renene.2024.121770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate prognostication of degradation plays an essential role in effectively enhancing the operational lifespan of proton exchange membrane fuel cells (PEMFCs). This paper proposes a novel enhanced correctional grey Verhulst model (IHS-CRGVM-RE), designed to prognosticate the degradation process of PEMFCs using the voltage of PEMFCs stack as a health indicator. First, the inverse hyperbolic sine function transformation is employed to attain optimal smoothness in data treatment. Then, the background value within the grey Verhulst model framework is modified based on cellular automata with rectangle techniques. Finally, a residual correction mechanism is applied to delineate the influences of error outcomes concerning PEMFCs degradation. Rigorous validation is provided via a comprehensive analysis based on two distinct PEMFCs datasets. The results demonstrate that the proposed model outperforms other data-driven models in prognostication accuracy, highlighting its significant importance for prognosticating the lifespan of PEMFCs.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"237 \",\"pages\":\"Article 121770\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096014812401838X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096014812401838X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

准确预测衰减对有效提高质子交换膜燃料电池(PEMFC)的运行寿命至关重要。本文提出了一种新的增强型修正灰色韦尔赫斯特模型(IHS-CRGVM-RE),旨在利用 PEMFC 堆的电压作为健康指标来预测 PEMFC 的退化过程。首先,采用反双曲正弦函数变换以达到最佳的数据处理平滑度。然后,在灰色 Verhulst 模型框架内,基于矩形细胞自动机技术修改背景值。最后,应用残差校正机制来划定 PEMFCs 降解误差结果的影响因素。基于两个不同的 PEMFC 数据集的综合分析提供了严格的验证。结果表明,所提出的模型在预报准确性方面优于其他数据驱动模型,这凸显了该模型在预测 PEMFC 寿命方面的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A refined grey Verhulst model for accurate degradation prognostication of PEM fuel cells based on inverse hyperbolic sine function transformation

A refined grey Verhulst model for accurate degradation prognostication of PEM fuel cells based on inverse hyperbolic sine function transformation
Accurate prognostication of degradation plays an essential role in effectively enhancing the operational lifespan of proton exchange membrane fuel cells (PEMFCs). This paper proposes a novel enhanced correctional grey Verhulst model (IHS-CRGVM-RE), designed to prognosticate the degradation process of PEMFCs using the voltage of PEMFCs stack as a health indicator. First, the inverse hyperbolic sine function transformation is employed to attain optimal smoothness in data treatment. Then, the background value within the grey Verhulst model framework is modified based on cellular automata with rectangle techniques. Finally, a residual correction mechanism is applied to delineate the influences of error outcomes concerning PEMFCs degradation. Rigorous validation is provided via a comprehensive analysis based on two distinct PEMFCs datasets. The results demonstrate that the proposed model outperforms other data-driven models in prognostication accuracy, highlighting its significant importance for prognosticating the lifespan of PEMFCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信