利用合成碳纳米管去除双酚 A 的人工智能见解

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Abd-Alkhaliq Salih Mijwel , Nur Irfah Mohd Pauzi , Haiyam Mohammed Alayan , Haitham Abdulmohsin Afan , Ali Najah Ahmed , Mustafa M. Aljumaily , Mohammed A. Al-Saadi , Ahmed El-Shafie
{"title":"利用合成碳纳米管去除双酚 A 的人工智能见解","authors":"Abd-Alkhaliq Salih Mijwel ,&nbsp;Nur Irfah Mohd Pauzi ,&nbsp;Haiyam Mohammed Alayan ,&nbsp;Haitham Abdulmohsin Afan ,&nbsp;Ali Najah Ahmed ,&nbsp;Mustafa M. Aljumaily ,&nbsp;Mohammed A. Al-Saadi ,&nbsp;Ahmed El-Shafie","doi":"10.1016/j.micromeso.2024.113411","DOIUrl":null,"url":null,"abstract":"<div><div>Water quality nowadays, under climate change, has become a risk and challenging problem to save water from deterioration. Advanced solutions such as nanomaterials and artificial intelligence for simulation have become some of the best and essential solutions. Therefore, this study assessed the artificial intelligence models' accuracy in simulating the elimination of Bisphenol A (BPA) using synthesized carbon nanotubes (CNTs). We concluded that the pseudo-second-order model's (R2) correlation coefficient is (0.999) significantly higher than the other models. Because the findings between the Model and Actual Values are so accurate, the adsorption of BPA on CNT could be modeled using the pseudo-second-order model, qe = 144.928(mg/g) and K2 = 0.0016. The correlation coefficient of Pseudo-First-Order model's (R2) is (0.825) qe = 27.107(mg/g) and K1 = 0.0161, and the Intraparticle diffusion model's (R2) is (0.821),qe = 151.98(mg/g) and Kd = 2.4. The Langmuir model performed the best in isothermal experiments, with correlation coefficients of R2 = 0.9441, qm = 181.81, and RL = 0.0375. Based on the information provided, we may conclude that the Langmuir model accounts for more BPA adsorption than the other models. We employed the feedforward neural network (FFNN) and the recurrent neural network (RNN). The FFNN achieved a coefficient of 0.971, while the RNN obtained a higher correlation coefficient of 0.98.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"383 ","pages":"Article 113411"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence -driven insights into bisphenol A removal using synthesized carbon nanotubes\",\"authors\":\"Abd-Alkhaliq Salih Mijwel ,&nbsp;Nur Irfah Mohd Pauzi ,&nbsp;Haiyam Mohammed Alayan ,&nbsp;Haitham Abdulmohsin Afan ,&nbsp;Ali Najah Ahmed ,&nbsp;Mustafa M. Aljumaily ,&nbsp;Mohammed A. Al-Saadi ,&nbsp;Ahmed El-Shafie\",\"doi\":\"10.1016/j.micromeso.2024.113411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water quality nowadays, under climate change, has become a risk and challenging problem to save water from deterioration. Advanced solutions such as nanomaterials and artificial intelligence for simulation have become some of the best and essential solutions. Therefore, this study assessed the artificial intelligence models' accuracy in simulating the elimination of Bisphenol A (BPA) using synthesized carbon nanotubes (CNTs). We concluded that the pseudo-second-order model's (R2) correlation coefficient is (0.999) significantly higher than the other models. Because the findings between the Model and Actual Values are so accurate, the adsorption of BPA on CNT could be modeled using the pseudo-second-order model, qe = 144.928(mg/g) and K2 = 0.0016. The correlation coefficient of Pseudo-First-Order model's (R2) is (0.825) qe = 27.107(mg/g) and K1 = 0.0161, and the Intraparticle diffusion model's (R2) is (0.821),qe = 151.98(mg/g) and Kd = 2.4. The Langmuir model performed the best in isothermal experiments, with correlation coefficients of R2 = 0.9441, qm = 181.81, and RL = 0.0375. Based on the information provided, we may conclude that the Langmuir model accounts for more BPA adsorption than the other models. We employed the feedforward neural network (FFNN) and the recurrent neural network (RNN). The FFNN achieved a coefficient of 0.971, while the RNN obtained a higher correlation coefficient of 0.98.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"383 \",\"pages\":\"Article 113411\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181124004335\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124004335","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如今,在气候变化的影响下,水质已成为一个具有风险和挑战性的问题,以防止水质恶化。纳米材料和人工智能模拟等先进解决方案已成为一些最佳和必要的解决方案。因此,本研究评估了人工智能模型在利用合成碳纳米管(CNTs)模拟消除双酚 A(BPA)方面的准确性。我们得出结论,伪二阶模型的相关系数(R2)(0.999)明显高于其他模型。由于模型值和实际值之间的结论非常准确,因此双酚 A 在 CNT 上的吸附可以使用伪二阶模型来模拟,即 qe = 144.928(mg/g)和 K2 = 0.0016。伪一阶模型的相关系数(R2)为(0.825),qe = 27.107(mg/g),K1 = 0.0161;粒子内扩散模型的相关系数(R2)为(0.821),qe = 151.98(mg/g),Kd = 2.4。朗缪尔模型在等温实验中表现最佳,相关系数为 R2 = 0.9441,qm = 181.81,RL = 0.0375。根据所提供的信息,我们可以得出结论:Langmuir 模型比其他模型更能吸附双酚 A。我们采用了前馈神经网络(FFNN)和循环神经网络(RNN)。FFNN 的相关系数为 0.971,而 RNN 的相关系数更高,为 0.98。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence -driven insights into bisphenol A removal using synthesized carbon nanotubes

Artificial intelligence -driven insights into bisphenol A removal using synthesized carbon nanotubes
Water quality nowadays, under climate change, has become a risk and challenging problem to save water from deterioration. Advanced solutions such as nanomaterials and artificial intelligence for simulation have become some of the best and essential solutions. Therefore, this study assessed the artificial intelligence models' accuracy in simulating the elimination of Bisphenol A (BPA) using synthesized carbon nanotubes (CNTs). We concluded that the pseudo-second-order model's (R2) correlation coefficient is (0.999) significantly higher than the other models. Because the findings between the Model and Actual Values are so accurate, the adsorption of BPA on CNT could be modeled using the pseudo-second-order model, qe = 144.928(mg/g) and K2 = 0.0016. The correlation coefficient of Pseudo-First-Order model's (R2) is (0.825) qe = 27.107(mg/g) and K1 = 0.0161, and the Intraparticle diffusion model's (R2) is (0.821),qe = 151.98(mg/g) and Kd = 2.4. The Langmuir model performed the best in isothermal experiments, with correlation coefficients of R2 = 0.9441, qm = 181.81, and RL = 0.0375. Based on the information provided, we may conclude that the Langmuir model accounts for more BPA adsorption than the other models. We employed the feedforward neural network (FFNN) and the recurrent neural network (RNN). The FFNN achieved a coefficient of 0.971, while the RNN obtained a higher correlation coefficient of 0.98.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信