利用机器学习和流体流动建模优化犹他州 FORGE 地热项目中生产井的几何形状

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Yanrui Ning , Jeffrey R. Bailey , Jeff Bourdier , Prathik Prasad , Israel Momoh
{"title":"利用机器学习和流体流动建模优化犹他州 FORGE 地热项目中生产井的几何形状","authors":"Yanrui Ning ,&nbsp;Jeffrey R. Bailey ,&nbsp;Jeff Bourdier ,&nbsp;Prathik Prasad ,&nbsp;Israel Momoh","doi":"10.1016/j.renene.2024.121767","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the critical challenge of optimizing well placement in Enhanced Geothermal Systems (EGS), specifically within the framework of the Utah FORGE geothermal project, as part of the 2023 Society of Petroleum Engineers (SPE) Geothermal Datathon. Effective well placement is essential for enhancing geothermal production efficiency and maximizing resource utilization. We employed a discrete fracture network (DFN) modeling approach, utilizing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm from the Scikit-Learn library to analyze microseismic event location data. Through rigorous simulations conducted in the open-source GeoDT fluid flow simulator, we identified an optimal production well configuration characterized by a spacing of 400 m, an injection rate of 0.03 m³/s, and alignment parameters that significantly improve thermal recovery. The results indicate a projected net present value (NPV) of $75 million over a 20-year operational horizon, underscoring the economic potential of optimized well placement strategies. This study offers valuable insights for the operation of the FORGE geothermal site. More importantly, it exclusively utilizes open-source tools, enhancing accessibility and adaptability for the broader geothermal community.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121767"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing production well geometry in the Utah FORGE geothermal project using machine learning and fluid flow modeling\",\"authors\":\"Yanrui Ning ,&nbsp;Jeffrey R. Bailey ,&nbsp;Jeff Bourdier ,&nbsp;Prathik Prasad ,&nbsp;Israel Momoh\",\"doi\":\"10.1016/j.renene.2024.121767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the critical challenge of optimizing well placement in Enhanced Geothermal Systems (EGS), specifically within the framework of the Utah FORGE geothermal project, as part of the 2023 Society of Petroleum Engineers (SPE) Geothermal Datathon. Effective well placement is essential for enhancing geothermal production efficiency and maximizing resource utilization. We employed a discrete fracture network (DFN) modeling approach, utilizing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm from the Scikit-Learn library to analyze microseismic event location data. Through rigorous simulations conducted in the open-source GeoDT fluid flow simulator, we identified an optimal production well configuration characterized by a spacing of 400 m, an injection rate of 0.03 m³/s, and alignment parameters that significantly improve thermal recovery. The results indicate a projected net present value (NPV) of $75 million over a 20-year operational horizon, underscoring the economic potential of optimized well placement strategies. This study offers valuable insights for the operation of the FORGE geothermal site. More importantly, it exclusively utilizes open-source tools, enhancing accessibility and adaptability for the broader geothermal community.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"237 \",\"pages\":\"Article 121767\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148124018354\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124018354","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

作为 2023 年美国石油工程师学会(SPE)地热数据马拉松的一部分,本研究探讨了强化地热系统(EGS)中优化井位的关键挑战,特别是在犹他州 FORGE 地热项目的框架内。有效的井位布置对于提高地热生产效率和资源利用最大化至关重要。我们采用离散断裂网络 (DFN) 建模方法,利用 Scikit-Learn 库中的基于密度的噪声应用空间聚类 (DBSCAN) 算法分析微地震事件位置数据。通过在开源 GeoDT 流体流动模拟器中进行严格模拟,我们确定了最佳生产井配置,其特点是间距为 400 米,注入率为 0.03 立方米/秒,对准参数可显著提高热采收率。研究结果表明,在 20 年的运营期内,预计净现值 (NPV) 为 7500 万美元,凸显了优化井位策略的经济潜力。这项研究为 FORGE 地热基地的运营提供了宝贵的见解。更重要的是,它完全采用了开源工具,提高了广大地热社区的可访问性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing production well geometry in the Utah FORGE geothermal project using machine learning and fluid flow modeling
This study addresses the critical challenge of optimizing well placement in Enhanced Geothermal Systems (EGS), specifically within the framework of the Utah FORGE geothermal project, as part of the 2023 Society of Petroleum Engineers (SPE) Geothermal Datathon. Effective well placement is essential for enhancing geothermal production efficiency and maximizing resource utilization. We employed a discrete fracture network (DFN) modeling approach, utilizing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm from the Scikit-Learn library to analyze microseismic event location data. Through rigorous simulations conducted in the open-source GeoDT fluid flow simulator, we identified an optimal production well configuration characterized by a spacing of 400 m, an injection rate of 0.03 m³/s, and alignment parameters that significantly improve thermal recovery. The results indicate a projected net present value (NPV) of $75 million over a 20-year operational horizon, underscoring the economic potential of optimized well placement strategies. This study offers valuable insights for the operation of the FORGE geothermal site. More importantly, it exclusively utilizes open-source tools, enhancing accessibility and adaptability for the broader geothermal community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信