{"title":"通过连续方法揭开流动池中空气喷射分析的神秘面纱","authors":"Ilan Ben-Noah","doi":"10.1016/j.advwatres.2024.104841","DOIUrl":null,"url":null,"abstract":"<div><div>We present various analytical solutions for a two-dimensional steady air source that demonstrate classical flow physics’ usefulness in air-sparging evaluation. These solutions capture different flow geometry and setup effects while offering accuracy, speed, and a deeper understanding of governing physics. Compared to empirical models, they excel with fewer physical parameters. We validate their accuracy by comparing these solutions to experimental air-sparging data from two-dimensional flow cells. This comparison underscores the applicability of the physical model and establishes a relationship between grain size and a key model parameter. Furthermore, this analysis enables predictive capabilities for scaled-up systems with diverse setup geometries.</div><div><strong>Plain Language Summary</strong> Air-sparging refers to the injection of air below the groundwater table, that is, to the water-saturated section of the aquifer. Air-sparging is used to facilitate the volatilization of organic pollutants (e.g., solvents, gasoline) and their extraction to the soil surface. However, evaluating and modeling the flow and distribution of air is limited by the complicated physics of unstable multiphase flow. These complexities drive researchers to search for empirical relations and rules of thumb to design air-sparging systems. In this research, we use previously published experimental data to demonstrate the capabilities and discuss the limitations of the classical physical solutions of steady single-phase flow to evaluate air flow through wet porous media such as aquifers.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling air sparging analysis in flow cells through the continuum approach\",\"authors\":\"Ilan Ben-Noah\",\"doi\":\"10.1016/j.advwatres.2024.104841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present various analytical solutions for a two-dimensional steady air source that demonstrate classical flow physics’ usefulness in air-sparging evaluation. These solutions capture different flow geometry and setup effects while offering accuracy, speed, and a deeper understanding of governing physics. Compared to empirical models, they excel with fewer physical parameters. We validate their accuracy by comparing these solutions to experimental air-sparging data from two-dimensional flow cells. This comparison underscores the applicability of the physical model and establishes a relationship between grain size and a key model parameter. Furthermore, this analysis enables predictive capabilities for scaled-up systems with diverse setup geometries.</div><div><strong>Plain Language Summary</strong> Air-sparging refers to the injection of air below the groundwater table, that is, to the water-saturated section of the aquifer. Air-sparging is used to facilitate the volatilization of organic pollutants (e.g., solvents, gasoline) and their extraction to the soil surface. However, evaluating and modeling the flow and distribution of air is limited by the complicated physics of unstable multiphase flow. These complexities drive researchers to search for empirical relations and rules of thumb to design air-sparging systems. In this research, we use previously published experimental data to demonstrate the capabilities and discuss the limitations of the classical physical solutions of steady single-phase flow to evaluate air flow through wet porous media such as aquifers.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170824002288\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824002288","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Unveiling air sparging analysis in flow cells through the continuum approach
We present various analytical solutions for a two-dimensional steady air source that demonstrate classical flow physics’ usefulness in air-sparging evaluation. These solutions capture different flow geometry and setup effects while offering accuracy, speed, and a deeper understanding of governing physics. Compared to empirical models, they excel with fewer physical parameters. We validate their accuracy by comparing these solutions to experimental air-sparging data from two-dimensional flow cells. This comparison underscores the applicability of the physical model and establishes a relationship between grain size and a key model parameter. Furthermore, this analysis enables predictive capabilities for scaled-up systems with diverse setup geometries.
Plain Language Summary Air-sparging refers to the injection of air below the groundwater table, that is, to the water-saturated section of the aquifer. Air-sparging is used to facilitate the volatilization of organic pollutants (e.g., solvents, gasoline) and their extraction to the soil surface. However, evaluating and modeling the flow and distribution of air is limited by the complicated physics of unstable multiphase flow. These complexities drive researchers to search for empirical relations and rules of thumb to design air-sparging systems. In this research, we use previously published experimental data to demonstrate the capabilities and discuss the limitations of the classical physical solutions of steady single-phase flow to evaluate air flow through wet porous media such as aquifers.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes