Radhika S. Desai , Vinayak S. Jadhav , Pritam J. Morankar , Sushant B. Patil , Shivaji B. Sadale , Sidharth R. Pardeshi , Divya D. Lad , Pramod S. Patil , Chan-Wook Jeon , Dhanaji S. Dalavi
{"title":"水热法合成具有潜在超级电容器应用前景的 Co3O4 纳米线自支撑分层微流体","authors":"Radhika S. Desai , Vinayak S. Jadhav , Pritam J. Morankar , Sushant B. Patil , Shivaji B. Sadale , Sidharth R. Pardeshi , Divya D. Lad , Pramod S. Patil , Chan-Wook Jeon , Dhanaji S. Dalavi","doi":"10.1016/j.jelechem.2024.118800","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the synthesis of ultrathin flower architecture of spinel-structured Co<sub>3</sub>O<sub>4</sub> electrodes, on nickel foam using a double hydrothermal method, followed by annealing at 250 °C for 4 h. We systematically investigate the effects of varying reaction times and additional Co<sup>2+</sup> treatment during the second hydrothermal process on the morphology and electrochemical properties of Co<sub>3</sub>O<sub>4</sub>. Field emission scanning electron microscopy (FE-SEM) images confirm the formation of self-supported hierarchical flowers, characterized by sharp, spike-like nanowires (16–33 nm in diameter) arranged radially. The self-supported optimized hierarchical Co<sub>3</sub>O<sub>4</sub> thin film, characterized by its unique architecture and substantial mass loading of 4.6 mg cm<sup>−2</sup>, achieved an impressive specific capacitance of 749.48F g<sup>−1</sup> at a scan rate of 10 mV s<sup>−1</sup> (specific capacity of 182.16 mAh g<sup>−1</sup>) in 2 M KOH electrolyte and retained 64 % of its initial capacitance after 5000 cycles. Furthermore, a symmetric device demonstrated the ability to illuminate a red LED for approximately 120 s when two devices were connected in series.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"976 ","pages":"Article 118800"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal synthesis of self-supported hierarchical microflowers of Co3O4 nanowires for potential supercapacitor application\",\"authors\":\"Radhika S. Desai , Vinayak S. Jadhav , Pritam J. Morankar , Sushant B. Patil , Shivaji B. Sadale , Sidharth R. Pardeshi , Divya D. Lad , Pramod S. Patil , Chan-Wook Jeon , Dhanaji S. Dalavi\",\"doi\":\"10.1016/j.jelechem.2024.118800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the synthesis of ultrathin flower architecture of spinel-structured Co<sub>3</sub>O<sub>4</sub> electrodes, on nickel foam using a double hydrothermal method, followed by annealing at 250 °C for 4 h. We systematically investigate the effects of varying reaction times and additional Co<sup>2+</sup> treatment during the second hydrothermal process on the morphology and electrochemical properties of Co<sub>3</sub>O<sub>4</sub>. Field emission scanning electron microscopy (FE-SEM) images confirm the formation of self-supported hierarchical flowers, characterized by sharp, spike-like nanowires (16–33 nm in diameter) arranged radially. The self-supported optimized hierarchical Co<sub>3</sub>O<sub>4</sub> thin film, characterized by its unique architecture and substantial mass loading of 4.6 mg cm<sup>−2</sup>, achieved an impressive specific capacitance of 749.48F g<sup>−1</sup> at a scan rate of 10 mV s<sup>−1</sup> (specific capacity of 182.16 mAh g<sup>−1</sup>) in 2 M KOH electrolyte and retained 64 % of its initial capacitance after 5000 cycles. Furthermore, a symmetric device demonstrated the ability to illuminate a red LED for approximately 120 s when two devices were connected in series.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"976 \",\"pages\":\"Article 118800\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724007781\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007781","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Hydrothermal synthesis of self-supported hierarchical microflowers of Co3O4 nanowires for potential supercapacitor application
This study explores the synthesis of ultrathin flower architecture of spinel-structured Co3O4 electrodes, on nickel foam using a double hydrothermal method, followed by annealing at 250 °C for 4 h. We systematically investigate the effects of varying reaction times and additional Co2+ treatment during the second hydrothermal process on the morphology and electrochemical properties of Co3O4. Field emission scanning electron microscopy (FE-SEM) images confirm the formation of self-supported hierarchical flowers, characterized by sharp, spike-like nanowires (16–33 nm in diameter) arranged radially. The self-supported optimized hierarchical Co3O4 thin film, characterized by its unique architecture and substantial mass loading of 4.6 mg cm−2, achieved an impressive specific capacitance of 749.48F g−1 at a scan rate of 10 mV s−1 (specific capacity of 182.16 mAh g−1) in 2 M KOH electrolyte and retained 64 % of its initial capacitance after 5000 cycles. Furthermore, a symmetric device demonstrated the ability to illuminate a red LED for approximately 120 s when two devices were connected in series.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.