Xiaoqiang Wang , Kaiyin Zuo , Mingyu Ma , Nan Zhang , Wenbo Gao , Mingya Li , Lei Wu
{"title":"氧化镍电致变色复合膜掺钛种子层的微观结构与能带结构耦合调控","authors":"Xiaoqiang Wang , Kaiyin Zuo , Mingyu Ma , Nan Zhang , Wenbo Gao , Mingya Li , Lei Wu","doi":"10.1016/j.jelechem.2024.118801","DOIUrl":null,"url":null,"abstract":"<div><div>Structure regulation and doping modification are important means to enhance the electrochemical and electrochromic performance of anode NiO electrochromic films. How to improve cycle stability is crucial for the application of NiO electrochromic films. In this work, we prepared Ti-doped seed layers with varying precise chemical stoichiometry ratios through the sol–gel spin coating method. Subsequently, NiO composite films were successfully fabricated on these seed layers through a simple hydrothermal process. Notably, among all the samples, the A 1/8 sample exhibits superior electrochromic performance, including a large optical modulation amplitude (69.61 % at 550 nm), faster response time (5.0 and 6.2 s), high coloring efficiency (33.87 cm<sup>2</sup>/C), and excellent cycle stability (3300 cycles). The seed layer plays a crucial role in preventing direct contact between the electrolyte and the electrode, inducing the growth of self-assembled structures, and enhancing adhesion between the film and the electrode. The Ti-doped seed layer can regulate the composite film microstructure and band structure, impacting the film electrochromic properties. In this work, we demonstrate that the cycle stability of the NiO composite films is improved through dual regulation of structure and doping. The A 1/8 sample exhibits superior cycle stability, attributed to the coupling effect of multi-channel nanostructure, and reduces interface barrier with FTO.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"976 ","pages":"Article 118801"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The microstructure and energy-band structure coupling regulation of Ti-doped seed layer for the NiO electrochromic composite films\",\"authors\":\"Xiaoqiang Wang , Kaiyin Zuo , Mingyu Ma , Nan Zhang , Wenbo Gao , Mingya Li , Lei Wu\",\"doi\":\"10.1016/j.jelechem.2024.118801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structure regulation and doping modification are important means to enhance the electrochemical and electrochromic performance of anode NiO electrochromic films. How to improve cycle stability is crucial for the application of NiO electrochromic films. In this work, we prepared Ti-doped seed layers with varying precise chemical stoichiometry ratios through the sol–gel spin coating method. Subsequently, NiO composite films were successfully fabricated on these seed layers through a simple hydrothermal process. Notably, among all the samples, the A 1/8 sample exhibits superior electrochromic performance, including a large optical modulation amplitude (69.61 % at 550 nm), faster response time (5.0 and 6.2 s), high coloring efficiency (33.87 cm<sup>2</sup>/C), and excellent cycle stability (3300 cycles). The seed layer plays a crucial role in preventing direct contact between the electrolyte and the electrode, inducing the growth of self-assembled structures, and enhancing adhesion between the film and the electrode. The Ti-doped seed layer can regulate the composite film microstructure and band structure, impacting the film electrochromic properties. In this work, we demonstrate that the cycle stability of the NiO composite films is improved through dual regulation of structure and doping. The A 1/8 sample exhibits superior cycle stability, attributed to the coupling effect of multi-channel nanostructure, and reduces interface barrier with FTO.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"976 \",\"pages\":\"Article 118801\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724007793\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007793","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
The microstructure and energy-band structure coupling regulation of Ti-doped seed layer for the NiO electrochromic composite films
Structure regulation and doping modification are important means to enhance the electrochemical and electrochromic performance of anode NiO electrochromic films. How to improve cycle stability is crucial for the application of NiO electrochromic films. In this work, we prepared Ti-doped seed layers with varying precise chemical stoichiometry ratios through the sol–gel spin coating method. Subsequently, NiO composite films were successfully fabricated on these seed layers through a simple hydrothermal process. Notably, among all the samples, the A 1/8 sample exhibits superior electrochromic performance, including a large optical modulation amplitude (69.61 % at 550 nm), faster response time (5.0 and 6.2 s), high coloring efficiency (33.87 cm2/C), and excellent cycle stability (3300 cycles). The seed layer plays a crucial role in preventing direct contact between the electrolyte and the electrode, inducing the growth of self-assembled structures, and enhancing adhesion between the film and the electrode. The Ti-doped seed layer can regulate the composite film microstructure and band structure, impacting the film electrochromic properties. In this work, we demonstrate that the cycle stability of the NiO composite films is improved through dual regulation of structure and doping. The A 1/8 sample exhibits superior cycle stability, attributed to the coupling effect of multi-channel nanostructure, and reduces interface barrier with FTO.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.