Dongliang Ji , Sai K. Vanapalli , Hongbao Zhao , Zurun Yue
{"title":"煤岩复合材料在冲击荷载作用下的动态响应和构成模型","authors":"Dongliang Ji , Sai K. Vanapalli , Hongbao Zhao , Zurun Yue","doi":"10.1016/j.engfracmech.2024.110616","DOIUrl":null,"url":null,"abstract":"<div><div>Comprehensive understanding related to the dynamic responses of the composite materials is critical to prevent natural disasters in underground engineering and mining activities. For this reason, experimental studies were undertaken using dynamic impact tests at different strain rates to explore the failure mechanism using split Hopkinson pressure bar (SHPB) system and Digital Image Correlation (DIC) on composite materials; coal-rock (C-R) and rock-coal (R-C). These results suggest a linear correlation between dissipative energy and fractal dimensions. In addition, they suggest cracks that develop predominantly on the coal side have a dominant influence on the failure process that could be attributed to the interface effects. The damage evolution was established assuming elastic conditions using a three-dimensional coupled FDM-DEM numerical simulation system. A<!--> <!-->numerical approach is also developed for interpreting failure mechanism of the composite material based on the fabric tensor and strain energy density. Finally, a constitutive<!--> <!-->relationship<!--> <!-->is established considering strain rate effect and damage evolution using series element studies. There is a good agreement between the experimental and numerical results, providing justification to the proposed constitutive relationship. The numerical approach in this study is promising for assessing the performance of composite materials<!--> <!-->taking account of dynamic loading conditions.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"312 ","pages":"Article 110616"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic response and constitutive model for coal-rock composite material subjected to impact loading\",\"authors\":\"Dongliang Ji , Sai K. Vanapalli , Hongbao Zhao , Zurun Yue\",\"doi\":\"10.1016/j.engfracmech.2024.110616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Comprehensive understanding related to the dynamic responses of the composite materials is critical to prevent natural disasters in underground engineering and mining activities. For this reason, experimental studies were undertaken using dynamic impact tests at different strain rates to explore the failure mechanism using split Hopkinson pressure bar (SHPB) system and Digital Image Correlation (DIC) on composite materials; coal-rock (C-R) and rock-coal (R-C). These results suggest a linear correlation between dissipative energy and fractal dimensions. In addition, they suggest cracks that develop predominantly on the coal side have a dominant influence on the failure process that could be attributed to the interface effects. The damage evolution was established assuming elastic conditions using a three-dimensional coupled FDM-DEM numerical simulation system. A<!--> <!-->numerical approach is also developed for interpreting failure mechanism of the composite material based on the fabric tensor and strain energy density. Finally, a constitutive<!--> <!-->relationship<!--> <!-->is established considering strain rate effect and damage evolution using series element studies. There is a good agreement between the experimental and numerical results, providing justification to the proposed constitutive relationship. The numerical approach in this study is promising for assessing the performance of composite materials<!--> <!-->taking account of dynamic loading conditions.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"312 \",\"pages\":\"Article 110616\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424007793\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424007793","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Dynamic response and constitutive model for coal-rock composite material subjected to impact loading
Comprehensive understanding related to the dynamic responses of the composite materials is critical to prevent natural disasters in underground engineering and mining activities. For this reason, experimental studies were undertaken using dynamic impact tests at different strain rates to explore the failure mechanism using split Hopkinson pressure bar (SHPB) system and Digital Image Correlation (DIC) on composite materials; coal-rock (C-R) and rock-coal (R-C). These results suggest a linear correlation between dissipative energy and fractal dimensions. In addition, they suggest cracks that develop predominantly on the coal side have a dominant influence on the failure process that could be attributed to the interface effects. The damage evolution was established assuming elastic conditions using a three-dimensional coupled FDM-DEM numerical simulation system. A numerical approach is also developed for interpreting failure mechanism of the composite material based on the fabric tensor and strain energy density. Finally, a constitutive relationship is established considering strain rate effect and damage evolution using series element studies. There is a good agreement between the experimental and numerical results, providing justification to the proposed constitutive relationship. The numerical approach in this study is promising for assessing the performance of composite materials taking account of dynamic loading conditions.
期刊介绍:
EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.